
openEuler OS Technical Whitepaper
Innovation Projects
(June, 2023)

OpenAtom openEuler Community

CONTENTS

1 Introduction� 001
Development Roadmap	� 002

2 Technology Ecosystem	� 003
Innovative Platform for Versatile Scenarios� 004

Everlasting Contribution to the Linux Kernel� 005

Software Package Repositories	� 005

Open and Transparent Management of the
Open Source Software Supply Chain� 005

Community-certified openEuler Distributions� 006

openEuler Open Source OS Architecture� 007

3 Scenario-specific Innovations� 008
Server� 009

DPUDirect� 009

eNFS� 011

HPCRunner� 013

WayCa Scheduler	� 015

Cloud Computing and Cloud Native� 017

HybridSched� 017

KubeOS� 018

NestOS� 020

Rubik� 021

Embedded� 023

GearOS � 023

MICA� 026

Rust-Shyper� 028

UniProton� 030

ZVM � 032

Edge Computing� 034

DSoftBus� 034

openEuler Edge� 036

4 Basic Capability Innovations� 038
Efficient Concurrency and Ultimate Performance� 039

A-Tune � 039

BiSheng JDK� 041

etMem� 044

EulerFS� 046

Gazelle � 047

GCC for openEuler� 049

HSAK� 053

iSulad� 054

Kmesh� 057

LLVM for openEuler� 059

OneAll� 062

StratoVirt� 063

Compiler Plugin Framework� 065

CONTENTS

Robust Security and Rocksolid Reliability� 066

IMA� 066

KunpengSecL� 068

secCrypto� 070

secGear� 072

secPaver� 073

sysMaster� 076

Simplified O&M and Development� 078

A-Ops� 078

CPDS� 081

CPM4OSSP � 083

CTinspector� 084

eggo� 085

nvwa� 087

PilotGo� 088

SysCare� 090

5 Developer Support� 092
Infrastructure� 093

Compass-CI� 093

CVE Manager� 095

EUR� 097

oepkgs� 098

openEuler Software Package Contribution Platform� 100

Signatrust� 101

Developer Tool� 102

EulerLauncher� 102

EulerTest� 103

pkgship� 105

QuickIssue� 106

Compatibility and Technical Assessment� 107

OSV Technical Assessment� 107

openEuler Compatibility List� 108

openEuler Technical Assessment� 110

Acknowledgment� 111

001openEuler OS Technical White Paper Innovation Projects

Introduction

002 openEuler OS Technical White Paper Innovation Projects

The openEuler open source community is incubated and operated by the OpenAtom Foundation.

openEuler is a digital infrastructure OS that fits into any server, cloud computing, edge computing, and embedded deployment.
This secure, stable, and easy-to-use open source OS is compatible with multiple computing architectures. It is ideal for operational
technology (OT) applications and enables the convergence of OT and information and communications technology (ICT).

The openEuler open source community collaborates with global developers to create an inclusive and diverse software
ecosystem that caters to all digitalization scenarios. This ecosystem empowers enterprises to develop their software,
hardware, and application ecosystems.

Development Roadmap

2021.12
1+ million openEuler-based installations

2022.09
Debuted at Open Source Summit Europe 2022

2022.12
Set up the openEuler Project Group

and openEuler Committee
Started independent project donations

2023.06
 Signed a letter of intent for donations

to Vtopia agent, secScanner,
KsPack, and secShield

2022.11
Won the World Leading Internet Scientific
and Technological Achievements Award

2023.04
Received 5 project donations: GoStone,
CTinspector, ZVM, Rust-Shyper, and QuickPool

2021.09
Upgraded to an open source OS for digital

infrastructure

2020.12
Community Council officially established

30,000 commercial installations

2019.12
 Code officially open-sourced

Community established

2022.03
The first versatile-scenario digital
infrastructure release, openEuler 22.03 LTS
Nine partners released commercial
distributions based on openEuler 22.03 LTS,
with a total of 1.7+ million installations

2021.11
Huawei and community partners donated
openEuler to the OpenAtom Foundation
300+ enterprise members

2021.08
100+ enterprise members

2019.09
Huawei unveiled openEuler

2020.03
The first LTS release, openEuler 20.03 LTS
Commercial releases by Kylinsoft, iSOFT,
UnionTech, and Software Research Institute,
Chinese Academy of Sciences

003openEuler OS Technical White Paper Innovation Projects

Technology
Ecosystem

004 openEuler OS Technical White Paper Innovation Projects

openEuler is an OS platform that releases an LTS version every two years. Each LTS version provides enhanced specifications
and a secure, stable, and reliable OS for enterprise users.

openEuler is built on tried-and-tested technologies. A new openEuler innovative version is released every 6 months to quickly
integrate the latest technical achievements of openEuler and other communities. The innovative tech is first verified in the
openEuler open source community as a single open source project, and then these features are added to each new release,
enabling community developers to obtain the source code.

Technical capabilities are first tested in the open source community, and continuously incorporated into each openEuler
release. In addition, each release is built on feedback given by community users to bridge the gap between innovation and the
community, as well as improve existing technologies. openEuler is both a release platform and incubator of new technologies,
working in a symbiotic relationship that drives the evolution of new versions.

Innovative Platform for Versatile Scenarios

openEuler supports a diverse range of
devices, and covers various application
scenarios, and interfaces with other OSs
such as OpenHarmony, achieving ecosystem
interoperability through shared capabilities.
With a unified OS architecture supporting
all mainstream computing architectures,
openEuler is one of the best open source OSs
for diverse computing powers. It introduces
the concept of the versatile-scenario OS,
which achieves flexible version build and
service composition through a full-stack
atomization decoupling and Lego-style
architecture, making it ideal for servers, cloud
computing, edge computing, and embedded
systems. This white paper aims to provide
a comprehensive overview of openEuler's
architecture and its capabilities in supporting
various digital infrastructure scenarios.

20.03

Fi
rs

t in
no

va
tio

n
ve

rs
ion

Ke
rn

el
inn

ov
at

ive

ve
rs

ion

Cl
ou

d-
na

tiv
e

inn
ov

at
ive

ve
rs

ion

20.09 21.03 21.09 22.03 22.09 23.03

openEuler Version Roadmap
LTS Versions
openEuler 20.03 LTS openEuler 22.03 LTS

Innovation Versions
openEuler 20.09 openEuler 21.03 openEuler 21.09
openEuler 22.09 openEuler 23.09

LTS versions: released every two years, with long
lifecycle management based on innovation versions.
Each LTS version has a relatively stable performance,
reliability, and compatibility.

Innovation versions: released biannually between LTS
versions, featuring the latest technical achievements of
the openEuler and other communities.

openEuler community mainline versions

LT
S

LT
S

SP1 SP1

SP2 SP2

SP3 SP3

Information
Technology

Technology
Communication

10,000 + mainstream applications on cloud native, big data
CND, MEC, industrial control,etc.

Integrated ecosystems and
extensive compatibility through

distributed kits

Arm, x86, RISC-V, SW-64, LoongArch, Power,
100+ servers, and 300+ cards

CRM ERP BSS/OSS NFV DCS SCADA PLC ...

Cloud EdgeServer Embedded

Full coverage of mainstream application scenarios

Full coverage of mainstream computing
architectures

OpenHarmony

openEuler +
OpenHarmony

One OS for diverse devices

One OS for multiple
applications

Operational
Technology

005openEuler OS Technical White Paper Innovation Projects

Everlasting Contribution to the Linux Kernel
Huawei, Loongson, Kylinsoft, UnionTech
Software, Phytium, Chengdu JRLC,
China Telecom, China Mobile, and other
members of the openEuler community
continuously contribute to the Linux
kernel, covering chip architecture,
Advanced Configuration and Power
Interface (ACPI), memory management,
file systems, media, kernel documents,
bugfixs for kernel quality hardening, and
code rebuilds.

The openEuler community boasts 905
community partners and over 14,000
contributors, which continues to grow.
The total number of merged PRs has
surpassed 100,000, while the community
supports 34,000 software packages, which
has achieved over 1.38 million global
downloads.

The process of building an open source OS relies on supply chain aggregation and optimization. A reliable open source
software supply chain is fundamental to a large-scale commercial OS. openEuler combs through its software dependencies
based on real user scenarios, sorts out the upstream community addresses of all the software packages, and verifies its source
code in comparison to the upstream communities. This is a complete lifecycle management throughout build, verification,
and distribution. The build, runtime dependencies, and upstream communities of the open source software form a closed
loop, realizing a complete, transparent software supply chain management.

Open and Transparent Management of the Open Source
Software Supply Chain

Huawei, a strategic member of openEuler, ranks No.1 in Linux Kernel
contributions (5.10, 5.14, and 6.1).

The openEuler community works with
third-party developers to provide a
vast array of user-friendly software
packages. The community has
categorized its software repositories
into three types based on the source,
quality attribute, and package
maintenance mode. You can configure
software repositories according to
their specific needs. The redistribution
of software packages across different
repositories is subject to community
rules, which are based on usage,
stability, and maintenance status.

Software Package Repositories

EPOL

Image

EUR/oepkgs/...

Desktop/SDS/
DB/Big data/...

kernel/glibc/
system/GCC/...

Core/Base package repository
Software package repository of the openEuler LTS and innovation
releases. All software packages in this repository have completed the
end-to-end quality assurance of the openEuler community according to
the software quality attribute specifications of the community.

Extension repository
A supplement to the openEuler LTS and innovation software package
repository. The source code of the software packages in the repository all
comes from the openEuler community. However, the software package
release quality and maintenance support requirements of the openEuler
community cannot be fully met due to the package quality, technical
maturity, or participants of community developers.

Third-party package repository (open/closed source)
Software repository and build system provided by the openEuler
community or third-party systems. Software packages in this repository
are compatible with all openEuler releases and cannot break the
compatibility and dependency of software packages of various
openEuler releases. As a supplement to the openEuler software package
repositories, this repository provides the widest possible selection of
software packages for openEuler community users.

Linux Kernel Code Contributions

006 openEuler OS Technical White Paper Innovation Projects

Community-certified openEuler Distributions
(Sorted by certification time)

Partner System

xFusion Digital Technologies Co., Ltd. FusionOS 22

UnionTech Software Technology Co., Ltd. UOS V20 (1050e)

Hunan Kylinsec Technology Co., Ltd. Kylinsec OS V3 (openEuler distribution)

SUSE SUSE Euler Linux 2.0

H3C Technology Co., Ltd. H3Linux 2.0.2

Jiangsu HopeRun Software Co., Ltd.
HopeEdge V1.0
HopeStage V1.0

Nanjing Fiberhome Starrysky Co., Ltd. fitstarryskyos 22.06

Beijing Linx Software Co., Ltd. linxos 6.0.99

China Telecom e-Cloud Technology Co., Ltd. CTyunOS

TurboLinux Inc. TurboLinux Enterprise Server 16

Kylinsoft Co., Ltd. Galaxy Kylin Advanced Server Operating System V10

Shenzhen Archforce Technology Co., Ltd. ArchforceEuler 22.09

iSoftStone Information Technology (Group) Co., Ltd. ISSEL 22 LTS

CSG Digital Power Grid Group Co., Ltd. pegaspegasus server v1.0

DBAPPSecurity Co., Ltd. dasos e2.1.0

China Mobile (Suzhou) Software Technology Co., Ltd BC-Linux for Euler 21.10

iSOFT Infrastructure Software Co. Ltd. iSoft Server OS V5.1

Eversec (Beijing) Technology Co., Ltd. EversecOS 20.03

PowerLeader Computer System Co., Ltd. RedderStar V1.0

China Unicom Digital Technology Co., Ltd. CULinux

Guangdong ZTE NewStart Technology Co.,Ltd NewStartOS Server V6.02

007openEuler OS Technical White Paper Innovation Projects

openEuler Open Source OS Architecture

Cloud Edge/KubeEdge

Developer
support

Scenario collaboration
Scenario

enablement

Linux kernel

 x86, Arm, RISC-V GPU NPU

Real-time kernel Security kernel

Database Big data Resource orchestration Desktop system Industrial application ...

...

openEuler OpenHarmony / DSoftBus

Server
DPUDirect

HPCRunner

Efficient concurrency and
ultimate performance

A-Tune
etMem
Gazelle

Multi-kernel architecture

Diversified computing power

Cloud-native/Edge
KubeOS

Rubik

Unified
compose
platform

Unified SDK

Unified driver
framework

Embedded
ZVM
MICA

Strong security
and reliability

secCrypto
secPaver
secGear

Simplified O&M
and development

A-Ops
SysCare
CPDS

CPU GPU

Optimal performance
for a single scenario

Multi-scenario
capability

collaboration and
sharing

Fundamental
innovation

Lego-style
architecture

Optimal base

008 openEuler OS Technical White Paper Innovation Projects

Scenario-specific
Innovations

Server

009openEuler OS Technical White Paper Innovation Projects

DPUDirect
DPU SIG

DPUDirect creates a collaborative operating environment for services, enabling them to be easily offloaded and ported
between hosts and DPUs. The feature includes a process-level seamless offload function and a cross-host and -DPU
collaboration framework. This allows management-plane processes to be split and offloaded to the DPU without requiring
reconstruction. Once offloaded, these processes can continue managing processes on the host side. The DPUDirect feature
significantly reduces service offloading costs in DPU scenarios, simplifies O&M, and significantly reduces subsequent
maintenance costs.

Challenges
iNICs are gradually evolving into DPUs/IPUs, becoming an increasingly important part of cloud and data center infrastructure.
In addition to accelerating I/O on the data plane, DPUs/IPUs are also supporting the offloading of management- and control-
plane components. This means that all management and control components of the data center infrastructure can be
offloaded to the DPU, resulting in better architecture and more flexible deployments. Most mainstream offload solutions
involve splitting components. However, this approach has several drawbacks.
•	 Developers must understand the code of the components being offloaded.
•	 Cloud vendors maintain a large number of components, making offloading a burden.
•	 The code of offloaded components is difficult to inherit between upgrades and must adapt to the newest version, which is

complicated and expensive.

Project Introduction
DPUDirect builds a cross-host collaboration framework at the OS layer of the host and DPU, providing a consistent runtime
view for the management-plane processes offloaded to the DPU and the service processes on the host. In this way,
applications are unaware of offloading. Only a small amount of service code on the management plane is needed to ensure
software compatibility and evolving services, as well as reducing component maintenance costs.

Features
The figure illustrates the architecture of DPU management plane seamless offload framework. qtfs, a cross-host collaboration
framework is established at the host and DPU OS layers to provide a consistent runtime view for the management plane
processes offloaded to the DPU and the service processes on the host. This approach ensures that applications remain
unaware of the offloading process.

Server Cloud

Server

010 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
DPUDirect facilitates the complete offloading of the container management plane such as kubelet and dockerd, as well as the
virtualization management plane libvirtd. It eliminates the need of splitting over 10,000 lines of code, thereby reducing the
workload of adapting and maintaining by almost 20-fold. Furthermore, the service logic of the management plane remains
unaltered, ensuring service software compatibility and evolution.

Repositories
https://gitee.com/openeuler/dpu-utilities

•	 DPUDirect allows you to combine the following collaboration mechanisms to achieve seamless offloading in various
scenarios. File system collaboration supports cross-host file system access and provides a consistent file system view for
host and DPU processes. It also supports special file systems such as proc, sys, and dev.

•	 IPC collaboration enables unaware communication between hosts and DPU processes. It supports FIFO and Unix domain
sockets for cross-host communication.

•	 Mounting collaboration performs the mounting operation in a specific directory on the host, which can adapt to the
container image overlay scenario. The offloaded management-plane process can construct a working directory for the
service process on the host, providing a unified cross-node file system view.

•	 epoll collaboration supports epoll operations for cross-host access of remote common files and FIFO files, and supports read
and write blocking operations.

•	 Process collaboration uses the rexec tool to remotely start executable files. The rexec tool takes over the input and output streams
of the remotely started processes and monitor the status to ensure the lifecycle consistency of the processes at both ends.

By combining these mechanisms, policies can be tailored for different scenarios to fulfill the service requirements of the
management-plane processes, eliminating the need to split and reconstruct too many services.

PCIe communication channel/network

Cross-host insensible collaboration framework – qtfs

Common file
system collaboration

(open/read/write
/ioctl/...)

IPC collaboration
Mount

collaboration
(mount/umount)

epoll/poll
collaboration

FIFO
collaboration

Unix socket
collaboration

Host

VM Container

shimQEMU process

rexec server Rexec cross-host startup and monitoring

DPU

Management-plane processes

libvirtd dockerd

virsh client Kubernetes

https://gitee.com/openeuler/dpu-utilities

Server

011openEuler OS Technical White Paper Innovation Projects

eNFS
 Kernel SIG

The exponential growth of unstructured data has seen Network Attached Storage (NAS) become the most viable option for
managing massive unstructured production services. Enhanced Network File System (eNFS) helps improve the performance
and reliability of NAS. It establishes multiple links for I/O load balancing and automatically switches I/Os to other available
paths in case of a link failure, ensuring uninterrupted high-performance and high-reliability services.

Challenges
With the emergence of diverse application scenarios, data importance is increasing, and various industries are putting forward
higher requirements for the reliability and performance of NAS. However, traditional NFS only specifies one server IP address
for a single mount point, which poses several challenges.
•	 When an NIC or link is faulty, the mount point becomes inaccessible, suspending service I/Os and compromising reliability.
•	 The performance of a mount point is limited by the performance of a physical link, which poses challenges for the

performance of important services.
•	 NAS is often deployed in the public zone, and accessing it from the host requires crossing three layers of networking. If one

end is faulty, the IP address cannot detect the fault. File systems are manually mounted on the application layer, and active-
active links cannot be automatically switched over.

Project Introduction

The eNFS protocol is a driver module running in the openEuler OS kernel, consisting of the mounting parameter management
module at the NFS protocol layer and the multipathing management module at the transport layer. eNFS specifies multiple
local and server IP addresses to establish multiple TCP/RDMA links for different IP addresses, achieving functions such as
multi-path link setup, fault recovery and failover, and load balancing.

eNFS: Building an E2E High-Performance and Reliable Distributed File System for Production Services

Enhanced NFS protocolNative NFS protocol

NFS One Socket

Limited by the maximum
NIC performance

/A

/A

NFS-TCP+Nconnect
Multi Socket

Multi-link access for the
same file system/directory

Multi-link access for
each file system/directory

Maximized node
performance

Application cluster

Storage cluster (multi-node/multi-controller)

/A

/A /B /C /D /E /F

Multipath NFS/RDMA or NFS/TCP
Maximized cluster
performance in
client-server model

Server Cloud

Server

012 openEuler OS Technical White Paper Innovation Projects

Repositories
https://gitee.com/openeuler/kernel

Application Scenarios

eNFS provides high-performance data sharing capabilities beyond local file systems and also solutions to faults between the
client and server, ensuring service continuity and replacing native NFS.

NPS and Client & Server E2E HA Require High-Performance Solution

D
at

a
ex

ch
an

ge
 p

la
tfo

rm

C
ha

nn
el

 a
pp

lic
at

io
ns

R
ec

ei
pt

 im
ag

es

C
on

te
nt

 m
an

ag
em

en
t

pl
at

fo
rm

Finance

C
D

R

Carrier Healthcare

R
ec

ei
pt

 im
ag

es

U
ns

tru
ct

ur
ed

 d
at

a
pr

od
uc

tio
n

se
rv

ic
e

S
em

ic
on

du
ct

or
 E

D
A

A
I q

ua
lit

y
in

sp
ec

tio
n

R
&

D
 P

D
M

R
es

er
vo

ir
si

m
ul

at
io

n
an

d
an

al
ys

is

NAs

16K
5%

Live network EDA:
Metadata + Massive small files

Service
data

Massive
and deep
directories

Random
concurrency

Small files
(KB-level)

Metadata

Deep
directories

Multiple
operation

types

Random
high

concurrency

Data features

Data write
25% Metadata

read
42%

8K
50%

4K
10%

2K
10%

1K
10%

64K
5%

18K
4%

11K
1%

32K
5%

Data read
15% Metadata

write
18%

Production service (NFS)

FS

Pod Pod

Client
Link reliability and

concurrency performance

Server storage
Permission/Resource

control/DR/Security

vStore
1

FS1

FS2

vStore
2

FS3

FS4

vStore
3

FS5

FS6

IP network

FS

File sharing VirtualizationContainer

Compared to native NFS, eNFS boasts three key innovations.
•	 It enables second-level failover in the event of software or hardware faults on I/O paths. It also ensures multiple links

between the client and server for each single NFS mount point to support I/O transmission over those links, achieving cross-
controller and cross-site reliability. All configurations are recorded in one file, making it easy to deploy HPC applications on
different hosts by simply modifying the configuration file.

•	 Multi-link aggregation, covering NIC ports, NICs, and nodes, significantly improves host access performance.
•	 Notably, eNFS is the industry's first protocol to offer active-active path failover on a three-layer network. It enables cross-site

active-active failover in the event of storage faults or host-side I/O timeouts, effectively resolving cross-engine failures and
host unawareness issues.

https://gitee.com/openeuler/kernel

Server

013openEuler OS Technical White Paper Innovation Projects

HPCRunner
HPC SIG

With a mission to make HPC accessible to everyone, HPCRunner is committed to offering comprehensive solutions for
application deployment and tuning, with the aim of making HPC accessible to more people. Our closed-loop ecosystem
includes dependency management, performance analysis, application compilation, and automatic containers, catering to the
needs of developers, supercomputing centers, and scientific research institutes. Our goal is to simplify the HPC process and
provide a one-stop application for all your needs.

Challenges
The deployment process for HPC applications is not particularly straightforward. Each dependency must be installed
manually, and various compilers and Message Passing Interface (MPI) libraries are needed for compilation. Additionally,
the application of multiple hardware-related parallel and communication technologies lead to the increasing complexity of
porting between different architectures, and deploying and optimizing HPC applications can be quite demanding. To tackle
this challenge, openEuler has designed and implemented HPCRunner, an HPC deployment tuning assistant that significantly
reduces deployment costs and improves optimization efficiency.

Project Introduction

HPCRunner is composed of two parts: HPC dependency management and HPC application management. All third-party HPC
dependencies are uniformly managed by modules. With an installation script provided, HPCRunner automatically downloads,
decompresses, compiles, installs, and configures dependencies, and generates packages. This solves the problem of multiple
versions coexisting, which cannot be implemented by Yum. Additionally, HPCRunner supports deployment of closed-source
components with just a few clicks. As for HPC application management, HPCRunner abstracts all HPC applications as a
monolithic configuration file. You only need to compile commands for compilation, environment, running, and batch running
in the configuration file to automatically compile and run applications.

HPC Deployment Tuning Assistant: HPCRunner

Objectives 20%↓ deployment cost
20%↑ tuning efficiency

Unified deployment Flexible operation
Template-based tuning

One-click
deployment

One-click
compilation

One-click
operation

One-click
benchmarking

One-click
performance

profiling

Hello
HPC in
Arm/x86

Experience accumulation
in open deployment and tuning

Deployment and tuning
documents in scripts

Mass dependency installation scripts
Module file auto-generation
Mass tuning patches

One-click performance profiling

Cross-platform performance
integration
Built-in GEMM, OMP, and P2P
benchmark tests for early
environment problem detection

Easier compilation
& operation

Unified configuration file for all
HPC applications
Auto-generation of environment
variables and loading during
compilation and operation
Singularity container
auto-generation

Server Cloud

Server

014 openEuler OS Technical White Paper Innovation Projects

Application Scenarios

Scenario 1: Supercomputing center application management

HPCRunner is a powerful tool that simplifies the management of dependencies among different software packages. It ensures
that these packages are compatible with the required library and tool chain versions, making it easy to upgrade compilers
and parallel libraries. Furthermore, HPCRunner automates and simplifies the deployment of software packages of the same
version on multiple hosts, reducing manual input and avoiding errors.

Scenario 2: Scientific computing experiment

HPCRunner offers flexible configuration options for compiling applications, allowing you to optimize performance and
resource utilization as needed. You can also record software package versions and compilation options to ensure that
identical binary files are generated on different platforms with the same chip architecture, ensuring the test-retest reliability.
Furthermore, to adapt to the Kunpeng platform, HPCRunner integrates with the Kunpeng software full stack, which includes
a compiler, mathematical library, communication library, and porting and tuning tool chain, significantly improving the
application running efficiency of the Kunpeng platform.

Repositories
https://gitee.com/openeuler/hpcrunner

Features
•	 HPCRunner supports the Arm/x86 architecture, 100+ dependencies, and the deployment and installation of 60+ applications

within a few clicks. It uses the authoritative dependency directory structure in the industry to manage massive dependencies
and automatically generates module files.

•	 HPCRunner implements one-click compilation and operation, CPU/GPU performance profiling, and benchmarking based on
HPC configurations.

•	 All configurations are recorded in one file. To deploy HPC applications on different hosts, you only need to modify the
configuration file.

•	 The log management system automatically records all information during HPC application deployment.
•	 The software itself does not need to be compiled and can be used out of the box on the Python environment.
•	 HPC application containerization is also supported, with automatic connection to Singularity containers.

https://gitee.com/openeuler/hpcrunner

Server

015openEuler OS Technical White Paper Innovation Projects

WayCa Scheduler
WayCa SIG

WayCa Scheduler provides a set of software libraries and tools to optimize and complete the hardware topology export and
task scheduling of the Kunpeng platform based on Linux.

Challenges
The number of server cores is on the rise, and the cache and interconnection structures are becoming increasingly complex.
Server designs differ greatly from vendor to vendor. Although Linux is a general-purpose OS and supports hardware from
various vendors, it does not fully support the newly introduced hardware topology of Kunpeng. This presents a challenge in
fully utilizing the Kunpeng hardware performance on the existing software platform.

Project Introduction

By optimizing the firmware topology description, hardware topology establishment, and topology information export in the
Linux kernel, as well as the kernel scheduling algorithm, WayCa Scheduler enables applications to fully utilize components
such as the CPUs, cache, memory, and I/O peripherals. This feature improves system hardware utilization and memory
bandwidth, while reducing memory, cache, and peripheral access latency, thereby significantly improving application
performance on Kunpeng servers.

WayCa Scheduler offers several features, including topology discovery and export, scheduling support and optimization, and
user-mode topology support.
•	 The Linux ACPI and topology driver can enumerate and create hardware topologies for CPUs, cache, NUMA, and devices,

and search for hardware topology information through kernel interfaces such as sysfs.

OS kernel

Firmware Firmware topology reporting (ACPI/Device tree)

Hardware
location
(hwloc)

Common application

Linux topology
driver support Arch topology Arch numa

sysfs
topology
export

Scheduling domain setup

Topology-aware scheduling

Migration and wakeupLoad balancing

Server

Server

016 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
WayCa Scheduler has been integrated into the openEuler kernel and its related user-mode tools. This integration enables
hardware topology awareness and optimizes scheduling for applications on the Kunpeng server and openEuler OS, for
example, general-purpose databases, thereby improving system performance. In certain application scenarios, such as HPC
applications, tools like hwloc can be utilized to obtain topology information that meets the optimization policy requirements,
further improving the application performance.

Repositories
https://gitee.com/openeuler/wayca-scheduler

•	 Cluster and NUMA scheduling domains are established based on the hardware topology, and the scheduler supports load
balancing and migration based on hardware clusters and NUMA nodes. This fully utilizes L3 cache and memory resources,
reducing system latency and improving throughput.

•	 Furthermore, WayCa Scheduler provides user-mode topology support, which allows for optimization based on specific
service characteristics and requirements. For example, specific CPU or device binding policies can be implemented. To meet
the requirements of these applications, hwloc is adapted to provide hardware topology information for applications.

https://gitee.com/openeuler/wayca-scheduler

Cloud Computing and Cloud Native

017openEuler OS Technical White Paper Innovation Projects

Virt SIG

HybridSched

Low resource utilization of cloud data centers is a common issue in the industry, and has fueled ways to improve this problem,
such as deploying priority-based services (hybrid deployment).

HybridSched is a full-stack solution for hybrid deployment of VMs, covering enhanced OpenStack cluster scheduling, new
single-node QoS management component Skylark, and kernel-mode basic resource isolation. In particular, Skylark is a QoS-
aware resource scheduler used when high- and low-priority VMs are deployed together. It improves physical machine resource
utilization while ensuring the QoS of high-priority VMs.

Challenges
The core technology behind hybrid deployment is resource isolation and control. Server resources are multi-dimensional, and
the requirements of the upper-layer services for hardware resources are changing dynamically. Not only this, internal services
of VMs are invisible, and the underlying scheduling logic cannot detect the degree of service loss. These two aspects hinder the
hybrid scheduling technology of the virtualization platform.

Application Scenarios
To improve resource utilization, services are classified into high- and low-priority services based on latency sensitivity, and
deployment accordingly. Latency-sensitive services are recommended for high-priority VMs, such as web services, high-
performance databases, real-time rendering, and machine learning inference; while services not limited by latency can be
used on low-priority VMs, such as video encoding, big data processing, offline rendering, and machine learning training.

Repositories
https://gitee.com/openeuler/skylark

Project Introduction
•	 Enhanced cluster scheduling: Enhances

OpenStack Nova to support priority-
based semantic scheduling.

•	 Power consumption control: Limits
the CPU bandwidth of low-priority VMs
to reduce the overall system power
consumption and ensure the QoS of
high-priority VMs.

•	 Cache and memory bandwidth control:
Limits the LLC and memory bandwidth
of low-priority VMs. Currently, only static
allocation is supported.

•	 CPU interference control: Supports CPU
time slice preemption in microseconds,
SMT interference isolation, and can avoid
priority inversion.

openEuler HybridSched Kernel

cgroup/resctrl/proc

CPU interference isolation

Anti-hunger and anti-priority-inversion Multi-type resource allocation mechanism

RDT MPAMSMT isolation Hard priority

Cache/Memory bandwidth interference isolation

openEuler HybridSched OpenStack

Keystone Glance Nova

Neutron Hybrid resource
model Priority semantics Global CPU

bindingCinder

openEuler HybridSched QoS Manager (Skylark)

QoS analysis

Cinder Neutron

Nova compute Power consumption
data collection

Interference
locating

Interference
quantization

QoS control

libvirt priority defining

Control space search

CPU bandwidth control

Cloud

https://gitee.com/openeuler/skylark

Cloud Computing and Cloud Native

018 openEuler OS Technical White Paper Innovation Projects

KubeOS
Cloud Native SIG

KubeOS is an OS designed specifically for cloud-native scenarios, with a focus on containerization. KubeOS is a lightweight
and secure operating system that can be centrally managed through Kubernetes. It enables unified management of both
containers and node OS through Kubernetes, including atomic upgrades and API-based operations.

Challenges
In cloud-native scenarios, containers and Kubernetes are widely used. However, the management of OSs is affected.
•	 With applications being containerized, new challenges arise for OSs. Traditional OSs are too heavy and no longer fully

applicable.
•	 Containers and OSs are maintained and managed separately, which results in redundant management functions and

difficult scheduling.
•	 Siloed package management causes problems such as scattered and inconsistent container OS versions in the cluster. This

requires a unified container OS management mechanism.

To address these issues, we launched KubeOS, an OS O&M solution that uses Kubernetes to manage containers and OSs in a
unified manner.

Project Introduction
KubeOS leverages Kubernetes' CRD+Operator extension mechanism to create custom resources for OSs. This enables the OS to
be treated as a Kubernetes resource, monitored by the OS-Operator and OS-Proxy within the cluster. You can use Kubernetes
to set the desired state and information of the OS, and trigger processes such as upgrades, which are completed with the help
of the OS-Agent for operational tasks.

OS unified O&M and management

Pod
kube-apiserver

Master Node

Upgrade OS

OS Image Creation

Cluster

Image Registry

Deploy

Pod
os-operator

os-operator

KubeOS-scripts
KubeOS OCl image

KubeOS QCOW2 image

os-proxy KubeOS upgrade

Pod (User)

OS-
proxy a1 a2 ...

os-
agent

KubeOS

Worker Nodes

Pod

Server Cloud Edge

Cloud Computing and Cloud Native

019openEuler OS Technical White Paper Innovation Projects

Application Scenarios
KubeOS is mainly used as a cloud-native infrastructure, providing a basic operating environment for cloud services, helping
cloud vendors and customers in the telecom industry solve OS O&M problems in cloud-native scenarios.

Repositories
https://gitee.com/openeuler/KubeOS

Features
•	 Unified management: KubeOS connects the OS to the cluster as a component, uses Kubernetes to manage the OS and

service containers, and manages the OSs of all nodes.
•	 Collaborative scheduling: It can detect the cluster status before the OS changes to implement collaborative scheduling of

service containers and OSs.
•	 API O&M: Kubernetes-native declarative APIs are used to manage and maintain OSs in a standard manner.
•	 Atomic management: Based on the Kubernetes ecosystem, the atomic upgrade and rollback of the OS are implemented to

ensure consistency between cluster nodes.
•	 Lightweight security: Only components required for container running are included, reducing the attack surface and

vulnerabilities, overheads, and reboot time of the OS. The rootfs is read-only to protect the system from attacks and
malicious tampering.

https://gitee.com/openeuler/KubeOS

Cloud Computing and Cloud Native

020 openEuler OS Technical White Paper Innovation Projects

NestOS
K8s Distro SIG

NestOS is a cloud OS incubated in the openEuler community. It runs rpm-ostree and Ignition technologies over a dual rootfs
and atomic update design, and uses nestos-assembler for quick integration and build. NestOS is compatible with platforms
such as Kubernetes and OpenStack, reducing container overheads and providing extensive cluster components in large-scale
containerized environments.

Challenges
Various runtimes and management software have been emerging as containers and Kubernetes are widely adopted in
cloud native scenarios. Technologies such as container and orchestration further decouple service rollout and O&M from the
underlying environment. Without a unified O&M stack, O&M platforms need to be built repeatedly.

Application Scenarios
NestOS aims to meet the demands of containerized cloud applications, to solve problems such as inconsistent and repetitive
O&M operations of stacks and platforms. These problems are typically caused by the decoupling of containers and underlying
environments when using container and container orchestration technologies for rollout and O&M, but NestOS resolves this to
ensure consistency between services and the base OS.

Repositories
https://gitee.com/openeuler/NestOS

Project Introduction

Features
•	 Out-of-the-box design: Integrates popular container engines such as iSulad, Docker, and Podman to provide lightweight and

tailored OSs for the cloud.
•	 Easy configuration: Uses the Ignition feature to install and

configure a large number of cluster nodes with a single
configuration.

•	 Secure management: Runs rpm-ostree to manage
software packages and works with the openEuler software
package source to ensure secure, stable atomic updates.

•	 Hitless node updating: Uses Zincati to provide automatic
node updates and reboot without interrupting services.

•	 Dual rootfs: Executes dual rootfs for active/standby failovers,
to ensure integrity and security during system running.

Application and Service

PaaS

Physical Virtual Private Public

NestOS

Application and Service

...

Server Cloud Edge Embedded

https://gitee.com/openeuler/NestOS

Cloud Computing and Cloud Native

021openEuler OS Technical White Paper Innovation Projects

Rubik
sig-CloudNative

Rubik is a hybrid container deployment engine with adaptive single-node computing power optimization and quality of
service (QoS) assurance. It schedules and isolates resources to improve node resource utilization while ensuring the QoS for
mission-critical services.

Challenges
The expenditure on global cloud infrastructure services is enormous. However, the average CPU usage of user clusters in data
centers is low, ranging from only 10% to 20%. This results in significant resource waste and additional O&M costs, which have
become a critical issue for enterprises seeking to improve computing efficiency. Therefore, improving data center resource
utilization has become an urgent matter that needs to be addressed. One solution is to deploy online and offline jobs together,
utilizing idle online cluster resources to meet the computing requirements of offline jobs. This approach has become a
research hotspot in academia and industry.

However, the hybrid deployment of multiple service types can also lead to a peak-sharing problem, which can result in a loss
of QoS for mission-critical services.

Therefore, ensuring that QoS is not affected after improving resource utilization is a key technical challenge that needs to be
addressed.

Project Introduction

Features
•	 Compatible with the native Kubernetes system: Capabilities are extended based on extended APIs of native Kubernetes.
•	 Compatible with the openEuler system: Enhanced features (such as hierarchical kernel resource isolation) provided by

openEuler are automatically enabled. For other Linux distributions, only restricted management capabilities are provided
because some kernel features are missing.

•	 Interference identification and control during system running: Real-time interference identification and control capabilities
are provided for mission-critical services.

•	 Adaptive dynamic optimization: The performance of mission-critical services is optimized to ensure efficient and stable
operation, and the ratio of resources for online and offline services is dynamically adjusted to reduce QoS violations of
mission-critical services.

•	 Custom extensions: Advanced users can develop custom extensions for specific service scenarios.

Server Cloud Edge

Cloud Computing and Cloud Native

022 openEuler OS Technical White Paper Innovation Projects

Rubik solution

Kubernetes cluster

Worker node

Service to be
scheduled Injection-based feature analysis QoS model training

Pre-analysis

apiserverInterference-aware scheduler

Online service

Offline service

Host kernel

Rubik
Performance

tuning
Isolation and
preemption

Resource
forecasting

Performance
profiling

Interference
identification
and control

Custom
extensions

Application profiling system

Application Scenarios
Rubik is widely used in hybrid deployment of cloud service containers, covering hybrid deployment of web services, databases,
big data, and AI. It helps customers in industries such as Internet and communications achieve a data center resource
utilization rate of over 50%.

Repositories
https://gitee.com/openeuler/rubik

https://gitee.com/openeuler/rubik

Embedded

023openEuler OS Technical White Paper Innovation Projects

GearOS
Industrial Control SIG

GearOS is a real-time operating system (RTOS) developed by the Industrial Control SIG of the openEuler open source
community. It runs on openEuler Embedded and Yocto and enhances the real-time performance and reliability. GearOS can be
used in automotive control, robotic control, programmable logic controller (PLC), and machine tool control.

Challenges
Modern industries must be equipped with intelligent information technologies that are deployed in industrial systems,
which helps realize an industry and application ecosystem. Consider the example of smart manufacturing. Such integration
of big data, AI, robotic control, and device-cloud collaboration systems can deliver automated production, network-based
collaboration, customization, and other service transformations.

These technologies are not suited to Linux, which was initially designed to solve issues of throughput and scheduling but not
real-time response. Due to their unique application requirements, industrial systems have an ever-increasing demand for real-
time response, deterministic reaction, and functional security, making RTOSs a natural choice in industrial fields.

In practice, there are many challenges involved in integrating information technologies into industrial systems, but GearOS is
equipped to resolve these problems.

Project Introduction
GearOS is built on AArch64 and contains two kernels and two file system images.
•	 Two kernels (8 MB each) are rebuilt on openEuler kernel 4.19, in which one supports PREEMPT_RT and Jailhouse virtualization,

and the other supports Xenomai.
•	 Two file system images, including a compact file system image and a standard one. The compact one was created using

BusyBox, with a size of 5.4 MB.

Optional features

Basic features

Xenomai Cobalt PREEMPT_RT

Login authentication

Xenomai library

USB

GPIO PCle Ethernet

I-pipe

FT-2000/4 Kunpeng 920 x86 TI AM335x QEMU

Ethernet

GPU Block UART UART GPIO

Ethernet

USB GPU

GPIO

Jailhouse

Block PCle

UART

rt-tests libc

SSH Udev
Standard image

Python RPM

Perl OpenSSL

Modbus EtherCAT OPC UA TSN HSR/PRP NETCONF/YANG

CNC IPC Turnstile

Edge Embedded

Embedded

024 openEuler OS Technical White Paper Innovation Projects

Key Features
•	 Compatible with the FT-2000/4, Kunpeng 920, TI AM335x, QEMU ARM64, and x86 platforms
•	 Minimum kernel size: 3.3 MB
•	 Serial port, network, block device, USB, and PCIe drivers
•	 Minimum file system size: 5.4 MB
•	 Boot within 5s
•	 PREEMPT_RT and Xenomai
•	 Jailhouse virtualization
•	 Compact file system image: login authentication, Udev, SSH, Xenomai library, and rt-tests
•	 Standard file system image: Python, Perl, OpenSSL, SQLite, and RPM

Additional Features Oriented to Industrial Fields
•	 Modbus protocol
•	 Ethernet for Control Automation Technology (EtherCAT) protocol
•	 Open Platform Communications United Architecture (OPC UA) protocol
•	 Time-Sensitive Networking (TSN) protocol
•	 High-availability Seamless Redundancy (HSR)/Parallel Redundancy Protocol (PRP)
•	 Network Configuration Protocol (NETCONF)/Yet Another Next Generation (YANG)

Real-Time Features

The following table shows the cyclictest results of GearOS on the FT-2000/4 and Kunpeng 920 hardware platforms.

Platform
Test Environment (No Load) No CPU Isolation CPU Isolation

Test options: cyclictest -m -h 100 -q -l 10000000 -i100 -t 1 -n -p 99

Kunpeng 920

openEuler
20.03 LTS SP1

General-Purpose
Operating System

(GPOS)

Linux only 76 3

Linux + Xenomai 74 58

RTOS Xenomai 3 51

GearOS
GPOS

Linux + Xenomai 7 6

Linux + PREEMPT_RT 4 3

RTOS Xenomai 1 1

FT 2000/4

openEuler
20.03 LTS SP1

GPOS
Linux only 138 4

Linux + Xenomai 633 13

RTOS Xenomai 7 4

GearOS
GPOS

Linux + Xenomai 36 18

Linux + PREEMPT_RT 10 7

RTOS Xenomai 2 1

Embedded

025openEuler OS Technical White Paper Innovation Projects

Application Scenarios
This project aims to simulate and reflect typical computing workloads of the power grid project, smart turnstiles, and
computer numerical control (CNC) machine tools.

Repositories
https://gitee.com/openeuler/GearOS

Virtualization Features

•	 Impact on host machines

A comparison test compared the impacts of virtualization on a bare metal server and a server with Jailhouse using
UnixBench, lmbench, IOzone, and Netperf. The results show that enabling virtualization on the server causes little
performance loss on the CPU, memory, storage, network, and I/O.

The impact of Jailhouse on passthrough performance of the guest Linux bus on the FT-2000/4 hardware platform:
»» The multi-dimensional tests on Ethernet NIC passthrough using Iperf and Netperf show almost no performance loss.
»» In the PCI USB device passthrough tests using the dd, hdparm, and IOzone utilities, there is minimal performance loss.
»» In the Iperf network tests on the Inter-VM shared memory device (ivshmem), the performance is better than that of gigabit

NICs.

•	 Impact on guest systems
»» According to the interrupt tests (5 million external interrupts), the average and maximum interrupt response time

increases from 290 ns to 1,200 ns, and from 2,400 ns to 2,500 ns, respectively.
»» The interrupt jitter is about 1,000 ns.
»» According to the Iperf tests on Ethernet NIC passthrough (10 Mbit/s), there is almost no performance loss. (LwIP can only

run on 10 Mbit/s.)
»» The passthrough tests of the Inter-Integrated Circuit (I2C bus) show almost no performance loss (average value taken from

1,000 tests).
»» The passthrough tests of the Serial Peripheral Interface (SPI bus) show near-zero performance loss (average value taken

from 1,000 tests).
»» The passthrough tests of the Controller Area Network (CAN bus) show little performance loss (average value taken from

1,000 tests).

https://gitee.com/openeuler/GearOS

Embedded

026 openEuler OS Technical White Paper Innovation Projects

MICA
Embedded SIG

Mixed-criticality (MICA) is a multi-core SoC framework that supports mixed-criticality deployment of real-time and non-real-
time OSs or secure and non-secure OSs based on hardware-assisted virtualization, trusted execution environment (TEE), and
heterogeneous architectures. It utilizes the characteristics of each OS to meet the multi-objective constraints of embedded
systems, such as security, real-time response, and extensive functions.

Challenges
Improvements in hardware have allowed embedded systems to run on complex OSs like Linux. Embedded applications have
higher requirements on interconnection, AI, and iterative upgrade than general-purpose workloads, but they typically have
constraints in terms of resources, power consumption, real-time performance, reliability, and security. Because the Linux
architecture cannot meet such constraints, simplified dedicated OSs such as RTOSs or even bare metal runtime systems are
more suitable.

For embedded systems, hybrid deployment of multiple OSs faces the following challenges:
•	 Deployment of multiple OSs requires collaboration on the same multi-core (homogeneous or heterogeneous) SoC to

implement system functions.
•	 System isolation to prevent impact of failures, such as a crash or fault, to OSs that have high security, reliability, and real-

time requirements.
•	 Improved resource scheduling and utilization to ensure full use of hardware resources.

Project Introduction
The figure shows the overall architecture of MICA.

OS 1 OS 2 OS 3 OS 4

Lifecycle management

Bare metal Heterogeneous
architectures TEE ...Embedded

virtualization
Lightweight

container LibOs

Cross-OS
communication

MICA

Converged elastic base

Service-oriented
 framework Multi-OS infrastructure

MICA needs to be in coordination with a converged elastic base, a set of technologies that enable multiple OSs or runtimes to
run concurrently on a multi-core SoC. The base includes bare metal servers, embedded virtualization, lightweight containers,
library operating system (LibOS), TEE, and heterogeneous architectures. This setup allows MICA to use the advantages of
various technologies, such as high performance from the bare metal servers, better isolation and protection from embedded
virtualization, and the usability and flexibility of lightweight containers.

Edge Embedded

Embedded

027openEuler OS Technical White Paper Innovation Projects

Application Scenarios
The MICA project is positioned for mid-range and high-end embedded systems in manufacturing, energy, and robotics fields. It
currently supports OpenAMP and Jailhouse, and is in development to work with ZVM and Rust-Shyper.

Repositories
https://gitee.com/openeuler/mcs

MICA supports hybrid deployment of Linux and other OSs or runtimes, while the multi-core capabilities ensure the general-
purpose Linux and dedicated RTOS complement each other. In this way, different systems can be developed and deployed
independently or as a whole.

MICA consists of lifecycle management, cross-OS communication, service-oriented framework, and multi-OS infrastructure.
•	 Lifecycle management provides operations to load, start, suspend, and stop the client OS.
•	 Cross-OS communication uses a set of communication mechanisms between different OSs based on shared memory.
•	 Service-oriented framework enables different OSs to provide their own services. For example, Linux provides common file

system and network services, and the RTOS provides real-time control and computing.
•	 Multi-OS infrastructure integrates OSs through a series of mechanisms, covering resource expression and allocation and

unified build.

https://gitee.com/openeuler/mcs

Embedded

028 openEuler OS Technical White Paper Innovation Projects

Rust-Shyper
Virt SIG

Rust-Shyper is an embedded type-1 hypervisor built with Rust, and is oriented to embedded scenarios such as autonomous
vehicles and robotics. It is designed to improve resource utilization without compromising real-time performance, isolation,
or security of VM memory. Further, it supports VM migration and live hypervisor update, and can dynamically fix software
vulnerabilities without affecting VM running.

Challenges
Embedded systems have developed towards universal and mixed-criticality systems, which vary in terms of reliability, real-
time performance, and authentication. Resource isolation and real-time performance of critical tasks are major issues, and
while the virtualization solution can solve issues of isolation, current embedded virtualization options are still insufficient. The
following features need to be improved:
•	 Enhanced isolation and security between VMs to prevent malicious attacks
•	 Improved communication and real-time performance between VMs to avoid delay or jitter
•	 Superior stability and reliability of the hypervisor to avoid downtime from failures

Project Introduction
Rust-Shyper was initially developed by Professor Wang Lei's team from Beihang University, before it was donated to the
openEuler open source community in April 2023, where it has been continuously developed by the Virt SIG.

Rust-Shyper is a type-1 hypervisor based on AArch64 and consists of three layers:
•	 The bottom layer is the hardware layer, corresponding to the ARMv8 EL3 firmware layer.
•	 The middle layer is the hypervisor layer, corresponding to the ARMv8 EL2 virtualization layer. This layer is also the privilege

layer of the Rust-Shyper code.
•	 The top layer is the VM layer, corresponding to the ARMv8 EL1 and EL0 layers.

Rust-Shyper delivers differentiated virtualization services by using three types of VMs: management VM (MVM), guest VM (GVM),
and real-time VM (RTVM).

MVM
(Native Linux)

Rust-Shyper web service

Device driver Rust-Shyper kernel module Device driver GIC driverDevice driverVirtio frontend driver

Rust-Shyper CLI General-purpose computing tasks Real-time computing tasks

GVM
(Vanilla Linux)

RTVM
(RTLinux/Bare-metal application)

User

Kernel

User

Kernel

User

Kernel

Rust-Shyper

VM trap processing

ABT exception Device emulation HVC Interrupt SMC

Memory management Device emulation Interrupt controller passthrough Asynchronous Rust task VM migration Live update

Exception handling Interrupt control Context switch Universal clock vCPU scheduling Power management

Hardware

Shared devices

CPU 0 CPU 1 CPU 2 CPU 3

Exclusive device

Embedded

Embedded

029openEuler OS Technical White Paper Innovation Projects

Application Scenarios
The Rust-Shyper project is in development, and aims to meet demands for mid-range and high-end complex embedded
systems in manufacturing, energy, robotics, and automotive electronics fields.

Repositories
https://gitee.com/openeuler/rust_shyper

Rust-Shyper's design concepts and features:
•	 Memory security: Uses the Rust's type system and security model to ensure memory security of the hypervisor.
•	 Strong isolation: Uses hardware-assisted virtualization to implement security and fault isolation between VMs.
•	 Extensive device models: Provides improved resource utilization and wide support for passthrough, mediation,

full emulation, and other devices.
•	 Real-time virtualization: Helps manage resource passthrough and real-time performance status.
•	 Live update: Implements VM migration and live hypervisor update.

https://gitee.com/openeuler/rust_shyper

Embedded

030 openEuler OS Technical White Paper Innovation Projects

UniProton
Embedded SIG

UniProton is a hard RTOS that delivers ultra-low latency in microseconds and mixed-criticality deployment. It can be deployed
together with general-purpose OSs such as openEuler Embedded and supports microcontrollers (MCUs) and multi-core CPUs
in industrial control systems.

Challenges
Industrial control systems require low deterministic latency from Oss, which is not possible with Linux due to the large size and
complex functions. Small embedded systems like UniProton feature a lightweight kernel, optimized performance, and custom
functions that combine to achieve ultra-low latency.

Project Introduction
Huawei is an experienced vendor specializing in hard real-time scenarios in the CT field who, in June 2022, released UniProton
as an open source software to the openEuler community, where the software has been developed by the Embedded SIG.

Application
scenarios

Scenario-specific
middleware

Basic
middleware

Mixed-criticality
deployment

Hardware
platform

OS

POSIX

OpenAMP

File system

Linux

Network framework Driver framework

x86 Arm

Intel Raspberry Pi HiSilicon (Shanghai) Kunpeng Phytium

CommunicationsScheduling
Lightweight thread

management

Memory

FSC memory algorithm

Context switch
Assembly instruction

optimization SMP

Event communication

UniProton

Compact

Security and reliability

Maintainability and testability

Feature tailoring

cpup Exception
takeover

Stack protection

Semaphore

Mutex

Queue

RW lock

Industry Aerospace CT Service robots

Robotics middleware Industrial control
middleware

Industrial control
connection components ...

Cloud Embedded

Embedded

031openEuler OS Technical White Paper Innovation Projects

Application Scenarios
Thanks to its low deterministic latency, UniProton is a hard real-time solution suited to manufacturing, healthcare, energy,
electric power, aerospace, and other industries that perform industrial production and robotic control.

Repositories
https://gitee.com/openeuler/UniProton

UniProton has the following features:

•	 Low Latency
»» Deterministic latency: maximum scheduling latency meeting service requirements
»» Ultimate performance: task scheduling and interrupt latency in microseconds
»» Lightweight: running in an environment with only tens of KB of memory

•	 Universality
»» POSIX-compliant APIs
»» Compatible with multiple instruction set architectures (ISAs) such as x86, AArch64, and Cortex-M, and chips such as Intel

and Raspberry Pi
»» Multi-core processors delivering efficient low-latency, multi-core computing

•	 Usability
»» Customized functions
»» Maintenance and testing, including cpup and exception takeover
»» Mixed-criticality deployments using Linux and RTOS capabilities

•	 Extensive Middleware
»» Unified and standard driver development framework that improves driver development efficiency
»» Various network protocol stacks and standard NICs
»» Industrial middleware that works with mainstream protocols and standards, and bus communication capabilities such as

EtherCAT

https://gitee.com/openeuler/UniProton

Embedded

032 openEuler OS Technical White Paper Innovation Projects

ZVM
Zephyr SIG

Zephyr-based Virtual Machine (ZVM) is an embedded real-time VM. Developed on the Zephyr RTOS and hardware-assisted
virtualization, it supports hybrid deployment and mixed-criticality scheduling of multiple runtimes, including Linux, RTOSs,
and bare metal programs.

Challenges
Embedded real-time virtualization allows multiple OSs to run on a single hardware platform at the same time while
maintaining deterministic and time-critical performance. It equips typical embedded systems with hardware integration,
system isolation, and brilliant flexibility, reliability, security, and scalability. In practice, embedded real-time virtualization has
been used to support advanced applications such as smart cars, CNC machine tools, and 5G devices.

There are several challenges when developing embedded real-time virtualization software. Questions include: how to ensure
isolation and security between different guest OSs, especially those with different levels of criticality and credibility; how to
share or allocate I/O devices among different guest OSs that require device emulation or passthrough; and how to deliver
consistent latency and throughput when the RTOS is running as a guest OS.

Future developments in this area will provide mandatory isolation, secure and efficient interrupt handling, flexible I/O device
management, and hardware support.

Project Introduction
ZVM was developed by Professor Xie Guoqi's team from the Key Laboratory for Embedded and Network Computing of Hunan
University, Hunan Province. In April 2023, the software was donated to the openEuler community, where it has been managed
and improved upon by the Zephyr SIG.

ZVM uses architecture-level hardware-assisted virtualization and virtualization host extension (VHE). It implements guest OS
isolation, device allocation, and interrupt handling, ensuring system security and real-time performance.

ZVM provides benefits in security isolation, device management, and system performance.
•	 Security isolation: The virtualization technology runs applications of different privileges, isolating guest OSs, especially

those with different criticality levels, for security purposes. Further, virtual address spaces (VASs) and virtual devices are
allocated to guest OSs to isolate VMs and ensure system security.

•	 Device management: Management programs that support device emulation and passthrough are used to share or allocate
I/O devices between guest OSs. Devices that need to be exclusively occupied by the interrupt controller are allocated in full
virtualization mode. Non-exclusive devices such as the Universal Asynchronous Receiver/Transmitter (UART) are allocated in
device passthrough mode.

•	 System performance: AArch64 virtualization extensions reduce the context overhead for processors, hardware-based two-
stage address translation reduces performance overhead for memory, and hardware-based interrupt injection reduces the
context overhead and interrupt latency.

The following figure shows the overall architecture. ZVM supports two types of guest OSs: Linux and Zephyr RTOS. The Zephyr
RTOS has a virtualization module to implement CPU, memory, interrupt, timer, and I/O virtualization.

Edge Embedded

Embedded

033openEuler OS Technical White Paper Innovation Projects

Application Scenarios
The ZVM project is being developed for mid-range and high-end complex embedded systems in manufacturing, energy,
robotics, and automotive electronics fields.

Repositories
https://gitee.com/openeuler/zvm

•	 CPU virtualization: This level virtualizes an independently-isolated context for each vCPU of the guest OS, in which each
vCPU is a thread and scheduled by ZVM on a unified platform. To improve vCPU performance, the AArch64 architecture
provides VHE that enables the host OS to migrate to the EL2 privilege level without modifying the OS code. In this process,
VHE redirects Arm registers so that the Zephyr RTOS kernel can be migrated to the EL2 level to develop ZVM, reducing system
redundancy and improving system performance.

•	 Memory virtualization: To protect the physical memory, the system needs to isolate the memory space of different guest OSs
and monitor the access of guest OSs to the physical memory. In this case, ZVM isolates memory addresses between guest
OSs. To implement this function, AArch64 provides a two-stage address translation mechanism, in which the virtual address
of the guest OS is translated into a physical address, and then the physical address of the guest OS is translated into that of
the host OS. Arm provides independent hardware for stage 2 to improve address translation performance.

•	 Interrupt virtualization: The Generic Interrupt Controller (GIC) of Arm is used to configure virtual interrupts. It provides
a unified platform to route the interrupts of the guest OS to ZVM, which then allocates them to different vCPUs. Virtual
interrupts are injected through the virtual CPU interface or list register in the GIC.

•	 Timer virtualization: This defines a group of virtual timer registers for each CPU. They separately count and throw interrupts
after a preset period of time, and then the host OS forwards the interrupts to the guest OS. In addition, during guest OS
switchover, the virtual timer calculates the actual running time of the guest OS, compensates for the time when the guest OS
exits, and provides the timer service for the guest OS.

•	 Device virtualization: ZVM uses the Arm memory-mapped I/O (MMIO) method to map device addresses to virtual memory
addresses to enable guest OSs to access device addresses. Specifically, ZVM builds a virtual MMIO device and allocates the
device to a specified guest OS during the creation of the guest OS, to implement I/O virtualization. For certain non-exclusive
devices, ZVM allows access through device passthrough.

Zephyr application

Zephyr-based Virtual Machine

Hardware

OS kernel OS kernel

Zephyr VM Linux VM

Guest application

Guest application

Guest application

Guest application

vCPU

CPU Memory GIC I/O

vMem vGIC vTimer vI/O

https://gitee.com/openeuler/zvm

Edge Computing

034 openEuler OS Technical White Paper Innovation Projects

DSoftBus
Distributed Middleware SIG

To develop a digital infrastructure OS and improve collaboration between devices and edges, openEuler marks an industry
feat by applying DSoftBus technology to the server, edge, and embedded. DSoftBus provides a unified platform to enable
collaboration and communication for distributed devices, achieving fast device discovery and efficient data transmission.

Challenges
Collaboration between edge devices includes the discovery, connection, networking, and transmission phases, though
interconnection between edge devices has the following difficulties:
•	 Different types of devices: There is no unified solution to cover various hardware capabilities and supported connection

modes, such as Wi-Fi, Bluetooth, and near field communication (NFC).
•	 Unstable and slow networking: It is difficult to automatically create and allocate network management roles between edge

devices and maintain network stability after devices exit, power off, or experience a fault.
•	 Poor transmission: Data transmission performance cannot be guaranteed between edges and devices, especially for devices

that have certain restrictions on power consumption.
•	 Difficult API adaptation: There are no unified APIs that mask differences in underlying hardware and networking, to allow

one service process can be reused by different edge devices.

Project Introduction

Key Features
•	 Device discovery and connection based on Wi-Fi, wired network, and Bluetooth
•	 Unified networking and topology of device and transmission information
•	 Transmission channel for data bytes, streams, and files

Architecture

DSoftBus consists of four basic modules: discovery, networking, connection, and transmission.

Relationship between DSoftBus and external modules

Distributed capability set

Kernel

Networking

Discovery
Transmission

Connection

Device authentication

IPC

syspara

DSoftBus

Edge Embedded

Edge Computing

035openEuler OS Technical White Paper Innovation Projects

Application Scenarios
DSoftBus is best suited for device discovery and interconnection between openEuler edge servers and common and
OpenHarmony embedded devices.

It provides unified APIs and protocol standards to enable self-connection, self-networking, and plug-and-play of multi-vendor,
multi-type devices, implementing the peripheral access needed in industrial production lines and campus management.

Repositories
https://gitee.com/openeuler/dsoftbus_standard

Deployment

For southbound devices, DSoftBus supports Wi-Fi, wired network, and Bluetooth connection, whereas for northbound
distributed applications, it provides unified APIs that mask the underlying communication mechanism.

DSoftBus depends on peripheral modules such as device authentication, inter-process communication (IPC), log, and system
parameters (SNs). In embedded environments, such modules can be tailored or replaced to provide basic functions of
DSoftBus, meet actual service scenarios, and extend DSoftBus capabilities.

Deployment
•	 DSoftBus can be deployed on multiple devices in the LAN, but the devices communicate with each other through the Ethernet.
•	 A device consists of a server and a client that communicate through the IPC module.
•	 Multiple clients can concurrently access a server on a device.

DSoftBus provides services for external systems through an independent process by executing the main program of the server.

Device 1 Device n

Client
n…1 Ethernet
IPC

Server Client
1…n

IPC
Server

https://gitee.com/openeuler/dsoftbus_standard

Edge Computing

036 openEuler OS Technical White Paper Innovation Projects

openEuler Edge
Edge SIG

openEuler Edge positioned as an edge computing edition for edge-cloud collaboration. It uses KubeEdge, an open source project
incubated by the Cloud Native Computing Foundation (CNCF) that delivers basic capabilities such as unified management and
provisioning for edge and cloud applications, to streamline AI deployments and service collaboration for edge-cloud service
discovery and traffic forwarding, and offer enhanced data collaboration to improve southbound capabilities.

Challenges
Edge computing is one of the top 10 major technology trends, and as such, is dominating current and future business models.
Consider how emerging fields like smart city, autonomous driving, and industrial Internet applications are generating huge data
volumes that cannot be processed by centralized cloud computing. For example, IDC forecasts that in 2025, 48.6 ZB of data will be
generated in China alone. There is a demand for high-speed, low-latency, and cost-efficient edge computing solutions.

Project Introduction
openEuler Edge integrates KubeEdge into a unified management platform, on which users can easily provision edge and cloud
applications. It delivers collaboration across edge and cloud to help streamline AI deployments, implement service discovery
and traffic forwarding, and improve southbound capabilities.

Features

kubectl

Pub

Sub

Cloud

Edge Devices

CloudCore

Cloud
node

Cloud
node

Edge
node

Edge
node

EdgeCore

Pod 1

Containers Containers Containers Containers

Pod 2 Pod 3 Pod N

M
ap

pe
rs

EdgeMesh Agent

Device 1

Device 2

Device 3

Device 4

EdgeController

DeviceController

CloudHub

Router

EdgeMesh Server

WebSocket (Default)

QUIC (Alternate)

KubeEdge framework for edge-cloud collaboration

Cloud Edge

Edge Computing

037openEuler OS Technical White Paper Innovation Projects

Application Scenarios
openEuler Edge is a popular option for edge-cloud collaboration in fields like public safety, energy, transportation,
manufacturing, finance, healthcare, campus, and unattended operation.

Repositories
https://mirror.sjtu.edu.cn/openeuler/openEuler-23.03/edge_img/x86_64/openEuler-23.03-edge-x86_64-dvd.iso

https://github.com/kubeedge/kubeedge

KubeEdge is equipped with the following features:
•	 Edge-cloud management collaboration allows users to provision applications and manage southbound peripherals across

edge and cloud.
•	 Improve service discovery and routing by deploying EdgeMesh Agent and EdgeMesh Server at the edge and on the cloud,

respectively.
•	 Optimized southbound edge services using Device Mapper, which provides the peripheral profile and parsing mechanisms

to help manage and control southbound peripherals and service streams. The southbound edge services are compatible
with the EdgeX Foundry open source ecosystem.

•	 Edge data services, including on-demand persistence of messages, data, and media streams, and data analysis and export
operations.

The Sedna framework provides the following features:
•	 Sedna GM and LC: General Manager (GM) is used for global task coordination, and Local Controller (LC) provides local dataset

and model management, status synchronization, and edge autonomy. These capabilities enable edge-cloud collaborative
inference and federated and incremental learning, improving training and deployment of edge-cloud AI.

•	 Sedna Lib: enables developers to efficiently develop edge-cloud AI collaboration features.

Sedna framework for intelligent collaboration

Cloud

Cloud node Cloud node

Local
Controller

Task mgmt & coordination

Edge

KubeEdge

Model/Database mgmt

Messaging over KubeEdge

Lib

Model

Global Manager Worker

GM Common

Worker

Edge node

Woker

LC Common

Dataset mgmt, model mgmt, status sync

Local Controller

Lib

Model

Incremental
learning mgmt

Joint
inference mgmt

Federated
learning mgmt Edge inference

Cloud
evaluating

Cloud
training

Parameter
aggregator

Edge training

https://mirror.sjtu.edu.cn/openeuler/openEuler-23.03/edge_img/x86_64/openEuler-23.03-edge-x86_64-dvd
https://github.com/kubeedge/kubeedge

Basic Capability
Innovations

Efficient Concurrency and Ultimate Performance

039openEuler OS Technical White Paper Innovation Projects

A-Tune
A-Tune SIG

A-Tune is an AI-powered OS performance tuning engine. It uses AI technologies to enable the OS to learn services statuses,
simplify IT system tuning, and deliver excellent performance.

Challenges
The development of hardware and software applications over the past few decades has coincided with a larger, more
comprehensive Linux kernel. In openEuler, the sysctl command is used to configure kernel parameters and has over 1,000
parameters (sysctl -a | wc -l). A typical IT system covers the CPU, accelerator, NIC, compiler, OS, middleware framework, and
upper-layer applications, and uses 7,000 parameters, most of which are default settings, which cannot tap into the full system
performance. Parameter tuning faces the following difficulties:
•	 A large number of parameters that depend on each other.
•	 Various types of upper-layer application systems require varying tuning of parameters.
•	 Complex and diversified loads require the parameters to vary accordingly.

Project Introduction

Features

A-Tune is in a client/server (C/S) architecture. The atune-adm on the client is a command-line tool that communicates with
the atuned process on the server through the gRPC protocol. The atuned process contains a frontend gRPC service layer
(implemented by Golang) and a backend service layer, the former of which manages optimization configurations and data and
provides tuning services for external systems, including intelligent decision-making (Analysis) and automated tuning (Tuning).
By contrast, the backend service layer is an HTTP service layer executed by Python that consists of the Model Plugin Interface
(MPI)/Configurator Plugin Interface (CPI) and AI engine. The MPI/CPI discovers system configurations, and the AI engine
provides machine learning capabilities for the upper layer, including classification and clustering for model identification and
Bayesian optimization for parameter search.

A-Tune software architecture

A-Tune client (atune-adm)

A-Tune server (atuned/Golang)

gRPC service

Configuration
Analysis Tuning

Database

Backend server (HTTP/Python 3)
MPI/CPI

Data
sampling

System
parameter

configuration
Classification

Al engine

Clustering Bayesian
optimization

Server

Efficient Concurrency and Ultimate Performance

040 openEuler OS Technical White Paper Innovation Projects

A-Tune delivers intelligent decision-making and automated tuning.

Intelligent decision-making is to sample system data and identify the corresponding loads using the clustering and
classification algorithms of the AI engine, obtain the types of service loads, extract optimization configurations from the
database, and select the optimal parameter values to fit each service load.
•	 Automatically selects key features and removes redundant ones for precise user profiling.
•	 Two-layer classification model accurately identifies service loads using the classification algorithm.
•	 Load awareness proactively identifies application load changes and implements adaptive tuning.

Automated tuning uses configuration parameters and performance metrics of the system or application as reference, to then
repeatedly perform iteration using the parameter search algorithm of the AI engine. This can obtain parameter configurations
that deliver optimal performance.
•	 Automatically tunes core parameters to reduce search space and improve training efficiency.
•	 Allows users to select the optimal tuning algorithm based on the application scenario, parameter type, and performance

requirements.
•	 Adds load features and optimal parameters to the knowledge base to improve future tuning operations.

Application Scenarios
A-Tune is widely used in Linux environments that handle big data, databases, middleware, and HPC workloads. Commonly
used in industries such as finance and telecom, the software improves performance of applications such as MySQL, Redis, and
BES middleware by 12% to 140%, respectively.

Repositories
https://gitee.com/openeuler/A-Tune

https://gitee.com/openeuler/A-Tune

Efficient Concurrency and Ultimate Performance

041openEuler OS Technical White Paper Innovation Projects

BiSheng JDK
Compiler SIG

BiSheng JDK is an open source edition of the Huawei JDK developed on OpenJDK. It is a high-performance OpenJDK
distribution that can run in the production environment thanks to its extensive development by the dedicated team, who
solved many issues caused by the native OpenJDK defects in actual deployments. On May 26, 2022, BiSheng JDK was released
in Eclipse Adoptium Marketplace, offering a stable, reliable, high-performance, and easy-to-debug JDK, and can even be
supercharged when run on the Kunpeng AArch64 architecture.

Challenges
JDK is the core component for Java environments that has been plagued by issues of performance and stability. Despite
difficulties in introducing new major features to OpenJDK 8 during the maintenance period, optimization features have been
added to resolve Java startup, garbage collection (GC), latency, encryption and decryption, and communication.

Project Introduction

Feature 1: AppCDS

In the initial phase of running a Java program, class loading is time-consuming and needs to be performed each time the
program is running. Class data sharing (CDS) saves the loaded class data to a file, so that the next time a user runs a Java
program, the loaded class data is directly restored from the file to the memory. Based on CDS provided by OpenJDK, BiSheng
JDK 8 extends application class data sharing, namely, AppCDS to support application classes, delivering performance 7%
higher on average than in the Hive SQL scenario.

AppCDS service process

Class file

JSA file

JVM system

Runtime data area

Standard boot
JSA file export
CDS boot

Meta space

Heap ...

Shared memory

Metadata of system class

Metadata of application class

Loading

Class loader subsystem

Linking

Initialization

Bootstrap
class loader

Extension
class loader

Application
class loader

Verify

Prepare

Resolve

Metadata of
system class

Metadata of
application class

Metadata of
unshared class

Server Cloud Edge

Efficient Concurrency and Ultimate Performance

042 openEuler OS Technical White Paper Innovation Projects

Feature 2: Promptly Return Unused Committed Memory from G1

The Garbage-First garbage collector (G1 GC) may not return committed Java heap memory to the OS in a timely manner,
and may perform it only after a full GC operation. Since G1 tries hard to completely avoid full GCs, it will not return Java heap
memory in many cases unless forced to do so externally.

This behavior is particularly disadvantageous in container environments where resources are paid by use. Even when the JVM
only uses a fraction of its assigned memory resources due to inactivity, G1 will retain all of the Java heap, causing users to pay
full price the resources or cloud providers unable to fully utilize their hardware. One solution is to ensure the JVM can detect
phases of Java heap under-utilization, and automatically reduce its heap usage. Assume 49 microservices are running and this
feature is enabled. G1 can return unused committed memory when the CPU is idle, reducing the physical memory committed
by G1 by 40% compared with that of the default settings.

Feature 3: KAE Provider

The Kunpeng Accelerator Engine (KAE) is an encryption and decryption module that supports the RSA, SM3, SM4, DH, MD5,
and AES algorithms, and provides high-performance symmetric and asymmetric encryption/decryption algorithms. The KAE is
compatible with OpenSSL 1.1.1a and later versions, and can work in synchronous or asynchronous mode.

BiSheng JDK adopts the Provider mechanism to support KAE encryption and decryption of Kunpeng servers, helping to
improve the security and related services on Kunpeng AArch64 servers. In HTTPS scenarios, the performance is doubled.

KAE Provider architecture

Java application

KAE

Provider
Message digest

MD5

SHA256

SHA512
...

Signature
MD5withRSA

SHA1withDSA

RawDSA
...

Cipher

...

HMAC

...

Key agreement

...

Algorithm context Native crypto
EVP_MD_CTX_create EVP_Digestlnit_ex

EVP_DigestUpdate EVP_DigestFinal_ex

EVP_MD_CTX EVP_CIPHER_CTX

EVP_PKEY_CTX
... ...

HMAC_CTX

OpenSSL

RSA

AES

DES

DH

ECDH

HMACMD5

HMACSHA256

HMACSHA512

EVP_MD_CTX EVP_CIPHER_CTX

EVP_PKEY_CTXHMAC_CTX
...

EVP_MD CTX_create EVP_Digestlnit_ex

EVP_DigestFinal_exEVP_DigestUpdate
...

Java layer

Native layer

Efficient Concurrency and Ultimate Performance

043openEuler OS Technical White Paper Innovation Projects

The KAE Provider supports the following algorithms.

Application Scenarios
BiSheng JDK is a common Java software developed and distributed on OpenJDK. It is widely used in Linux environments
to process big data, middleware, and encryption and decryption tasks, in industries like finance, middleware, carrier, and
Internet. On average, it improves the Spark performance by 10%, while for encryption and decryption improves by over 100%.

Repositories
BiSheng JDK 8, BiSheng JDK 11, and BiSheng JDK 17 are open sourced, with version updates and new features downloaded
every three months. Java developers can obtain the latest information and communicate with each other in the BiSheng JDK
open source community.

Software Delivery Type URL

BiSheng JDK 8 Open source code repository https://gitee.com/openeuler/bishengjdk-8

BiSheng JDK 11 Open source code repository https://gitee.com/openeuler/bishengjdk-11

BiSheng JDK 17 Open source code repository https://gitee.com/openeuler/bishengjdk-17

Algorithm Description

Digest algorithms MD5, SHA256, SHA384, SM3

AES ECB, CBC, CTR, GCM

SM4 ECB, CBC, CTR, OFB

HMAC HMACMD5, HMACSHA1, HMACSHA224, HMACSHA256, HMACSHA384, HMACSHA512

RSA 512-bit, 1024-bit, 2048-bit, 3072-bit, and 4096-bit keys

DH DHKeyPairGenerator and DHKeyAgreement; 512-bit, 1024-bit, 2048-bit, 3072-bit, and 4096-bit keys

ECDH ECKeyPairGenerator and ECDHKeyAgreement; secp224r1, prime256v1, secp384r1, and secp521r1

RSA signatures RSASignature and RSAPSSSignature

Efficient Concurrency and Ultimate Performance

044 openEuler OS Technical White Paper Innovation Projects

etMem
Storage SIG

etMem uses DRAM, low-speed memory (such as storage class memory), or hard drives to form tiered memory for application
processes. Its automatic memory scheduling redirects hot data to the high-speed DRAM and cold data to the low-speed media,
expanding available memory and improving service performance.

Challenges
Despite the relative cost effectiveness of X per CPU, the memory manufacturing process has plateaued, making it difficult to
innovate in the short term. As a result, the memory cost accounts for an increasing proportion of the total server cost. Further,
database, VM, big data, AI, and deep learning workloads are in demand of diversified computing power and large memory,
making it essential to slash memory costs and expand memory capacity.

Project Introduction

etMem is divided into the kernel-mode and user-mode modules to provide the following features:
•	 Process control: etMem configuration file can expand the memory in a more flexible and refined way when compared with

the native LRU-based pageout kswap mechanism.
•	 Cold and hot tiering: In user mode, a memory access scan can be performed for a designated process. Cold and hot tiering

policies are used to classify memory access results into hot and cold memory.
•	 Discarding policy: The cold memory is discarded when it meets the conditions specified in the etMem and system

environment policies. This process is based on the native kernel, a secure and reliable mechanism that does not affect user
experience.

User
mode

Kernel
mode

Accurate identification of hot and cold pages and in-service automatic swap
Configurable process-level policy control

Hardware

Memory page scan module
Memory

compression

DRAM SCM XL-FLASH

Memory
migration

Memory
swap

Memory page access statistics

Application Container VM

Memory page scan
Hot and cold page

tiering and discarding
Hot and cold

memory policy
Pages
missing

Server Cloud

Efficient Concurrency and Ultimate Performance

045openEuler OS Technical White Paper Innovation Projects

Application Scenarios
etMem is designed for service software that requires a large amount of memory but infrequently accesses the memory, such
as MySQL, Redis, and Nginx. In MySQL TPC-C scenarios, the performance is improved by 40% under the same cost conditions.

It supports tiered memory expansion for node service processes and does not involve cross-node remote operations. In a user-
mode storage framework, the userswap function can enable user-mode storage to be a swap device.

Repositories
https://gitee.com/openeuler/etmem/

Kernel-Mode Module

A memory page scan module and a memory discarding (compression, migration, and swap) module are available in the kernel
mode.
•	 Memory page scan module identifies page table features. It periodically collects memory page access statistics, and then

reports the statistics to the user mode.
•	 Memory discarding module receives the unwanted memory page addresses from the user mode, and uses open source

native capabilities to compress, migrate, or swap out those pages.

User-Mode Module
•	 Memory scanning triggers memory page scanning and collects results.
•	 Hot and cold tiering classifies memory access results into hot and cold memory according to the policy.
•	 Hot and cold memory policy performs actions on the hot and cold memory based on the configuration.

https://gitee.com/openeuler/etmem/

Efficient Concurrency and Ultimate Performance

046 openEuler OS Technical White Paper Innovation Projects

EulerFS
Kernel SIG

Non-volatile dual in-line memory modules (NVDIMMs), for example Intel Optane, are a high-speed storage medium that offers
byte-level access. The kernel file system EXT4 can work with the direct access (DAX) feature to improve the data read and
write performance of NVDIMMs. However, NVDIMMs are hampered with heavy metadata management overhead and write
amplification issues due to their journal synchronization mechanism.

The EulerFS file system has the innovative soft metadata update technology, which employs pointer-based dual directory
views to reduce the metadata synchronization overhead. EulerFS improves the performance of system calls including create,
unlink, mkdir, and rmdir. Compared with EXT4 DAX, EulerFS reduces the metadata operation latency by 25% to 75% and
increases the bandwidth by 0.2 to 4 times.

Application Scenarios
EulerFS works on all NVDIMM-based media and is an alternative to file systems such as EXT4 and XFS. It enables high-performance
data storage in standalone and cloud-native distributed applications.

Repositories
https://gitee.com/openeuler/eulerfs

Features

Points to latest next dentry

Points to consistent next dentry

Points to latest buckets

Points to consistent buckets

Mutually reachable

Directory
inode

1
2
3
4
...

C

D

B A

1
2
3
4
...

Directory VFS
index node

Buckets

Latest buckets

•	 Hash table directory: Hash tables are used to manage directory entries, accelerating linear search and reducing pseudo-sharing.
•	 Unified allocator: Data structures are arranged by a unified allocator, which breaks the boundaries between different data

structures and facilitates memory management.
•	 Soft update: This lightweight technology ensures file system consistency. It simplifies the implementation of file system consistency.
•	 Pointer-based dual directory views: This mechanism reduces metadata synchronization overhead and improves the read

and write performance of file systems.
•	 Dependency tracing: Operations such as directory entry creation and deletion are not made persistent immediately. After

the operations are complete, dependencies are traced only in the index node, while subsequent persistence is performed in
asynchronous mode to improve the performance.

Server Cloud

https://gitee.com/openeuler/eulerfs

Efficient Concurrency and Ultimate Performance

047openEuler OS Technical White Paper Innovation Projects

Gazelle
High-Performance Network SIG

Gazelle is a lightweight user-mode protocol stack developed based on Data Plane Development Kit (DPDK) and lightweight IP
(lwIP). It boosts application performance and is also versatile due to its broad compatibility and usability.

Challenges
As a key path that modern applications must pass, protocol stacks have always been a hot topic in performance research. As
software and hardware technologies have evolved over recent years, protocol stacks face the following new issues:

Hardware
•	 CPUs lag behind NICs in the increase of computing power. The single-core CPU architecture cannot fully utilize sufficient NIC

bandwidth.
•	 In a many-core architecture, the protocol stack design must avoid the NUMA swap out problem.

Software
•	 Modern large-scale software generally relies on a multi-thread architecture to make full use of hardware resources such as

CPUs and NICs. The software performance is expected to increase linearly as the number of threads increases.
•	 Diverse application network models call for a common protocol stack.
•	 The kernel protocol stack features high versatility and layered decoupling, but its performance is far from what is desired. In

comparison, the user-mode protocol stack is oriented to specific scenarios, trying to deliver maximum performance while
failing to fulfill versatility needs.

Design

In database scenarios, there are various network models and high requirements on network performance. Implementing
protocol stack software that balances performance and versatility is challenging.

Project Introduction
The Gazelle software architecture consists of ltran, lstack, and gazellectl. ltran distributes traffic to protocol stacks. lstack provides
lightweight protocol stack capabilities. gazellectl functions as an O&M tool to collect traffic statistics and generate diagnosis logs.

Open source feature

Application scenarios

NIC

Gazelle

Software/hardware forwarding model

POSIX compatibility
(epoll, Socket API, REUSEPORT, and more)

Plug-and-play
(LD_PRELOAD)

Lightweight protocol stack

NIC packet sending and receiving lstack management

DPDK

ltran (protocol stack distribution management)

lstack (versatile lightweight protocol stack) gazellectl
(O&M)

LwIP Kernel NIC Interface Bond UDP unicast/ multicast

Traffic
statistics

Metric logs

O&M
commands

...

...

Flexible configurations
(Core binding policies, hugepage specifications,

DPDK configuration, and more)

Ultimate performanceAdaptive scheduling

Hardware offload
(TSO, checksum, GRO, and more)

FD router Wakeup proxy

NIC multi-queue Polling/Interrupt mode

Regional hugepages Dynamic core binding

Zero copy Distributed TCP hash table

Telecom Finance

Server Cloud Edge Embedded

Efficient Concurrency and Ultimate Performance

048 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
Gazelle is best suited for database acceleration. It has been used in telecom and finance industries to improve MySQL
transaction processing test performance by more than 20% and Redis throughput by more than 50%.

Repositories
https://gitee.com/openeuler/gazelle

Gazelle has the following features:

High performance
•	 Ultra-lightweight implementation: The high-performance protocol stack works based on DPDK and LwIP.
•	 Ultimate performance: The highly linearizable concurrent protocol stack leverages technologies such as regional hugepage

splitting, dynamic core binding, and full-path zero-copy.
•	 Hardware acceleration: Hardware offload approaches, including TCP segmentation offload (TSO), checksum offload, and

generic receive offload (GRO), streamline the vertical acceleration of software and hardware.

Versatility
•	 POSIX compatibility: Full compatibility with POSIX APIs eliminates the need to modify applications when running them on

Gazelle.
•	 General-purpose network model: The adaptive network model scheduling, powered by socket routers, proxying wakeup,

and other mechanisms, fits into any network application scenario.

User-friendliness

Plug-and-play: With the LD_PRELOAD environment variable, protocol stack acceleration is felt immediately when Gazelle is
installed.

Easy O&M

O&M tool: Traffic statistics, logs, and command lines are available to streamline O&M.

https://gitee.com/openeuler/gazelle

Efficient Concurrency and Ultimate Performance

049openEuler OS Technical White Paper Innovation Projects

GCC for openEuler
Compiler SIG

The GCC for openEuler compiler is developed based on the open source GNU Compiler Collection (GCC). The open source GCC
is the de facto standard of cross-platform compilers, and it complies with the GPLv3 license, becoming the most widely used
C/C++ compiler on Linux. GCC for openEuler inherits capabilities of the open source GCC. It also has optimizations on C, C++,
and Fortran languages and delivers enhanced features such as automatic feedback-directed optimization (FDO), software
and hardware collaboration, memory optimization, and automatic vectorization. GCC for openEuler is compatible with a
wide range of hardware platforms such as Kunpeng, Phytium, and Loongson, fully unleashing the computing power of these
hardware platforms.

Challenges
GCC is fundamental to the OS as it is the default compiler of the Linux kernel and the de facto standard of cross-platform
compilers. Any change made to GCC may heavily impact upper-layer applications. Therefore, GCC developers must familiarize
themselves with the knowledge needed, such as compilation principles while improving feature security and robustness. GCC
for openEuler aims to boost the performance of upper-layer applications by providing more advanced features than the open
source GCC. In the Compiler SIG biweekly meetings the GCC is a fixed topic. All are welcome to attend.

Project Introduction
GCC for openEuler is compatible with mainstream hardware platforms including Kunpeng and x86, for use in openEuler
performance, security, reliability, and O&M projects, for example, working in the compiler plugin framework to provide
universal plugins. GCC for openEuler supports multi-architecture computing and microarchitecture optimization to implement
intelligent memory allocation, memory optimization, and automatic vectorization. Besides that, GCC for openEuler
incorporates industry-leading FDO technologies to implement automatic FDO, improving application performance for
databases. GCC for openEuler has made major breakthroughs in the following aspects:
•	 Basic performance: Improves computing performance in general scenarios and also applies to multi-architecture computing.
•	 FDO: Integrates industry-leading FDO technologies to implement multi-modal FDO throughout the process, improving key

applications such as databases in cloud-native applications.
•	 Chip enablement: Supports multi-architecture computing instruction sets and leverages computing advantages based on

hardware systems such as memory to improve scenario-specific performance such as HPC.
•	 Plugin framework: Offers one set of plugins that is compatible with different compilation frameworks, streamlining the GCC

and LLVM ecosystems.

Server Cloud Edge Embedded

Efficient Concurrency and Ultimate Performance

050 openEuler OS Technical White Paper Innovation Projects

Feature 1: Pointer compression (basic performance)

When structure field members contain structure pointers, an 8-byte pointer may cause alignment gaps between structure
members. Not only that, when the pointer is used together with a basic data type that is less than 8 bytes, memory padding
may occur, wasting memory space. As a result, the page table is refreshed frequently, memory access is delayed, and program
performance is compromised.

Structure pointer compression works for this application scenario. This feature compresses the structure pointers in structure
field members from 64 bits to 8-bit, 16-bit, or 32-bit integers. This reduces the memory occupied by the structure, reduces the
bandwidth pressure when data is read from or written to the memory, and streamlines data access.

PC

x86 Kunpeng Other chips RISC-V

Data center
NFV Database VirtualizationBig data HPC

920 9XX

GCC for openEuler

Compilation
optimization

Chip
enablement

Plugin
framework

openEuler
collaboration

Memory optimization

Multi-compiler support

Loop optimization

Automatic FDO

MLIR

Automatic vectorization

Floating point precision

Universal plugin service

Automatic parameter tuning

Multi-architecture computing

Microarchitecture optimization

Intelligent allocation

Stride prefetch

Scenario-specific performance Security, reliability, and O&M

F1 F1P1=ptr1 P1=ptr2F2

F1 F1 F1P1_ pc
=idx1

P1_ pc
=idx1 P1_ cmpF2 F2 F2

F2PAD PAD

struct st

struct st_pc struct st_pc struct st_pc

struct st

ptr2ptr1,gptr

idx1=(ptr1-gptr)/sizeof(st_pc) idx2=(ptr2-gptr)/sizeof(st_pc)

Efficient Concurrency and Ultimate Performance

051openEuler OS Technical White Paper Innovation Projects

Feature 2: End-to-end FDO

Major FDO technologies include profile-guided optimization (PGO) and AutoFDO, which work during compilation, along with
BOLT, which works during binary generation.

PGO is a compiler optimization technology which collects runtime profiles to improve optimization decision-making. The
compiler then makes use of runtime profiles and leverages various compilation optimization technologies to make more
accurate optimization decisions and generate target programs.

AutoFDO samples program running information to indirectly obtain the program execution status. It uses perf to collect
profiles while minimizing impact on program performance. AutoFDO decouples program source code from profile data and is
not sensitive to program code changes. The profiles collected in the development and test phases can be used to optimize the
target program, which can be reused multiple times.

BOLT presets relocation information when the compiler generates binary files, and performs binary-level optimization
operations, such as reordering basic blocks, reordering functions, and splitting cold and hot areas, to implement global binary
optimization.

GCC for openEuler enables FDO throughout the process by integrating PGO, AutoFDO, and BOLT. It also leverages minimum
cost flow algorithm correction and discriminator support to enhance optimization.

Source Toolchain Compiler BOLTLinker FDO
plugin

Binary
(with debugging

information)
BOLT toolchain

AutoFDO toolchain

Option
-fauto-profile

B

A
C

Read profiles from
each .o file.

Generate an
optimization option

to call BOLT.

Transfer option -fbolt-use
to the linker.

Option
-fprofile-use
-fauto-bolt Generate the BOLT

profile and option to
call BOLT.

Pass: Execute FDO.

Pass: Write the
program profiles
to each .o file.

reorder-
blocks

Split
functions

reorder-
functions

...

Program source code

Hardware sampling
data

Instrumentation
feedback data

Pass: Read the source
code-based samples
and build the control

flow graph

Pass: Read the
binary-based samples
and build the control

flow graph.

Efficient Concurrency and Ultimate Performance

052 openEuler OS Technical White Paper Innovation Projects

Feature 3: Intelligent allocation (chip enablement)

GCC for openEuler supports intelligent allocation for static optimization analysis of HPC applications. It analyzes memory
access data reuse and inserts prefetch instructions to improve the performance of the openFOAM, SPMV, and WRF kernel
functions by 30% on average.
•	 Dynamic and static compilation optimization: Static analysis and data reuse scoring models modified based on dynamic

execution feedback are added to GCC for openEuler to analyze and identify high-concurrency hotspot data.
•	 Intelligent memory allocation: GCC for openEuler generates and inserts prefetch instructions to explicitly notify hardware

of prefetch information. Together with the cache replacement policy, GCC for openEuler increases the cache utilization rate
and hit ratio.

•	 Ecosystem low-intrusive programming interface: GCC for openEuler will provide CUDA-like variable attributes and OpenMP
lead extension. It will automatically generate code to streamline development and improve ecosystem compatibility.

Application Scenarios
GCC for openEuler is developed based on the open source GCC. It is widely used in Linux environments such as openEuler
and is perfect for databases, virtualization, and HPC. On the Arm platform, GCC for openEuler delivers 1.2 times higher basic
performance of SPEC CPU 2017 than the open source GCC, boosting the performance of the MySQL database by more than 15%.

Repositories
GCC for openEuler is upgraded together with official openEuler releases. GCC developers can find the latest updates in the
openEuler community.

Software Product Delivery Type Link

GCC for openEuler
Code repository https://gitee.com/openeuler/gcc

Package repository https://gitee.com/src-openEuler/gcc

Compiler

Static analysis and identification

Intelligent
prefetch
algorithm

Prefetch informationPrefetch instruction
insertion

Allocate

(prefetch)
Enhanced dynamic sampling

Lead extension

Variable flagging

Cache PMU

Executable code

Profile generation
2

2

3

1
Dynamic
and static

compilation
optimization

CPU

Memory access
events

Ecosystem
low-intrusive

interface

https://gitee.com/openeuler/gcc
https://gitee.com/src-openEuler/gcc

Efficient Concurrency and Ultimate Performance

053openEuler OS Technical White Paper Innovation Projects

HSAK
Storage SIG

The Hybrid Storage Acceleration Kit (HSAK) improves the I/O performance of NVMe devices. The software library implements
an I/O software stack of high-performance NVMe devices. It is advanced for its user mode, asynchronization, lock-free, and
polling features. Compared with the NVMe device I/O software stack in the native Linux kernel, the HSAK greatly reduces the
latency of NVMe commands and improves the I/O processing capability (IOPS) of a single CPU.

Challenges
Evolving storage media such as NVMe solid state drives (SSDs) and storage class memory (SCM) have resulted in decreasing
access latencies caused by the media layer in the traditional I/O software stack. On the contrary, the software latency gradually
becomes a performance bottleneck, so when high-performance storage media are used, the overhead of the traditional kernel
I/O software stack accounts for more than 60% of the total I/O overhead. The reasons are as follows:
•	 When a user-mode service process delivers a request to a drive, the memory data needs to be copied multiple times.
•	 The drive requires two interrupts to respond to the I/O request, causing overheads such as process scheduling and context

switching.

There are many solutions to the previous problems, but most of them have the following drawbacks:
•	 The software is updated frequently and the external interfaces are inconsistent.
•	 The I/O data plane provides simple functions and cannot leverage hardware capabilities provided by NVMe drives.
•	 The capabilities of the management plane are insufficient, and device management or I/O monitoring methods are absent.

Project Introduction

Applications (VM, CSD)

SCM NVMe SSD HDDSSD Ceph server

Storage API

Storage
management

Linux AIO

HSAK API

GC CRC Hash

Linux Kernel Stack

NVMe
PCle
Driver

NVMe
over
TCP

iSCSI Initiator
NVMe-oF
Initiator Ceph RBD

Storage
protocol
and API

Storage
services

Hardware

Drivers

Server Cloud

Efficient Concurrency and Ultimate Performance

054 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
The kit is ideal for distributed storage services carried by NVMe drives or traditional storage services. It uses the user-mode
NVMe driver to take over drives, while also increasing the read and write performance of raw drives by 10-fold, and decreasing
the I/O overhead by more than 50%, compared to the kernel I/O stack.

Repositories
https://gitee.com/openeuler/hsak

The HSAK consists of the three-layer data plane and the storage management module.
•	 Storage protocol and API layer: provides stable and unified northbound storage APIs to mask storage protocol differences.
•	 Storage service layer: provides various storage media services, such as garbage collection, cyclic redundancy check, and

hash.
•	 Driver layer: connects to different devices or logical volumes in the southbound direction and provides unified device driver

registration APIs for using various storage media.
•	 Storage management: provides functions such as device management, I/O monitoring, and maintenance and test tools to

manage devices.

https://gitee.com/openeuler/hsak

Efficient Concurrency and Ultimate Performance

055openEuler OS Technical White Paper Innovation Projects

iSulad SIG

iSulad

iSulad is a lightweight container engine developed using C/C++. It is not restricted by hardware architecture or specifications,
has low memory overhead, and can be used in a wider range of fields.

Challenges
A container is an isolated environment that streamlines application packaging and distribution. Compared with virtualization
technologies, containers accelerate distribution and reduce overhead, effectively improving development and deployment
efficiencies. As the Docker container engine, Kubernetes container orchestration and scheduling, and cloud-native
deployments have become more widespread, the container ecosystem is developing rapidly.

There are an increasing number of user requirements on containers, including the following:
•	 Containers need to be deployed and started quickly.
•	 Resources consumed by containers must be limited to a reasonable range.
•	 Containers should adapt to Internet of Things (IoT) and edge computing scenarios.

Based on these user requirements, we propose the iSulad container solution, a lightweight and fast container engine.

Project Introduction

Features

The openEuler container engine, iSulad, features a unified
architecture design tailored for the requirements of
ICT fields. Compared with the Docker container engine
developed using Go, iSulad occupies fewer resources, starts
containers faster, and can be used in a wider range.

iSulad is named after the small isula ant, which is a small
but very powerful insect. The same can be said about iSulad.
It is a flexible, stable, and secure container base for various
application scenarios.

iSulad provides commands similar to those of Docker,
for greater usability. It supports the Container Runtime
Interface (CRI) in the northbound direction and can connect
to Kubernetes. You can use iSulad as the container base to
orchestrate and schedule containers through Kubernetes. It
also supports the Open Container Initiative (OCI) Runtime
Specification in the southbound direction and is compatible
with multiple container runtime environments, such as runc,
LXC, kata, and Kuasar.

iSulad software architecture

Kernel space

User space

Syscall

Cgroup Namespace

REST (light-mode)/gRPC (perf-mode)

runc kataLXC Kuasar

Container ImageEvents Log

Container
service Volume serviceImage service Network service

Plugin SpecRuntime Volume

CLI CRI

Runtime

Module

Service executor

Engine

iSulad

Server Cloud Edge Embedded

Efficient Concurrency and Ultimate Performance

056 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
iSulad has been widely used in cloud computing, ICT, embedded, and edge scenarios, empowering banking, finance,
communications, and cloud services. The openEuler community has been developing the iSulad+Kuasar+StratoVirt solution
for a more effective full-stack secure container solution.

Repositories
https://gitee.com/openeuler/iSulad

Core capabilities of iSulad include the container service, image service, volume service, and network service. The container
service manages the lifecycle of containers, while the image service enables operations on container images. iSulad complies
with the OCI Image Specification and supports mainstream image formats in the industry. In addition, iSulad supports the
external rootfs image format in system container scenarios and the embedded image format in embedded scenarios. The
volume service manages data volumes of a container, and the network service works together with Container Network
Interface (CNI)-compliant network plugins to provide network capabilities for containers.

As a general-purpose container engine, iSulad supports system containers and secure containers as well as common
containers.
•	 Common containers: They are traditional application containers.
•	 System containers: They have extended functions based on common containers, possessing the systemd management

service capability, as well as being able to dynamically add or release drives, NICs, routes, and volumes when the container
is running. System containers are mainly used in computing-intensive, high-performance, and heavy-concurrency scenarios
to accommodate computing-intensive applications and cloudified services.

•	 Secure containers: They are a combination of virtualization and container technologies. Unlike common containers that
share the same host kernel, secure containers clearly isolate containers from each other through the virtualization layer.
Each secure container has its own kernel and a lightweight VM environment, ensuring that different secure containers on the
same host do not affect each other.

Compared with Docker, iSulad features faster container startup and lower resource overhead. That is because iSulad is
developed using C/C++ and has lower running overhead than in other languages. iSulad optimizes the call chain at the code
layer. iSulad calls functions directly through the link library, whereas Docker call fork and exec functions on binary files
for multiple times. The shorter call length enables iSulad to start containers faster, and what's more, the C language is a
system programming language that allows iSulad to fully play its role on embedded and edge devices. In contrast, Docker is
developed using Go and has a narrower application scope.

According to tests, iSulad brings only 30% of the memory overhead incurred by Docker, and in Arm and x86 environments,
iSulad can start 100 containers concurrently in less than half of the time Docker takes. These advantages enable iSulad users
to start up containers faster and reduce resource consumption, minimizing the impact on containerized applications.

https://gitee.com/openeuler/iSulad

Efficient Concurrency and Ultimate Performance

057openEuler OS Technical White Paper Innovation Projects

Kmesh
eBPF SIG

Kmesh is a high-performance service mesh data plane software. Based on the programmable kernel, Kmesh offloads traffic
governance from proxies to the OS and shortens the traffic path from multiple hops to one hop. It significantly improves
application access performance in a service mesh.

Challenges
The boom of AI and live streaming applications has seen data centers expand to connect with more cluster services and
manage soaring volumes of data. It is a big challenge to efficiently implement traffic governance between microservices in a
data center.

Service meshes are one of next-generation microservice technologies that separate traffic governance from services and offload
it to the mesh infrastructure, implementing application-unaware traffic governance. However, their proxy architecture introduces
extra latency and overhead. For example, the service mesh software Istio increases the single-hop service access latency by 2 ms
to 3 ms, making Istio unable to meet the Service Level Agreement (SLA) requirements of latency-sensitive applications.

Application-unaware, high-performance traffic governance is a challenge that must be tackled.

Project Introduction
Kmesh works based on the programmable kernel to offload traffic governance to the OS. Kmesh supports the following features:

•	 �Kmesh can connect to a mesh control plane (such as Istio) that complies with the Dynamic Resource Discovery (xDS)
protocol.

•	 It orchestrates application traffic in the following ways:
»» Load balancing: Various load balancing policies such as polling.
»» Routing: L7 routing support.
»» Gray: Backend service policies available in percentage mode.

kernel

kmesh-runtime

kmesh-orchestration

kmesh-api

kmesh-controller

kmesh-probe

istiod/...

xds-adapter

kernel-base

observabilitymanager programmable

Cloud Edge

Efficient Concurrency and Ultimate Performance

058 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
Latency-sensitive applications such as e-commerce, cloud gaming, online conferencing, and short videos. Kmesh brings a 5-fold
forwarding performance increase in HTTP tests, compared to Istio.

Repositories
https://gitee.com/openeuler/Kmesh

As shown in the figure, the Kmesh software architecture consists of the following components:
•	 kmesh-controller: Kmesh management program, which is responsible for Kmesh lifecycle management, xDS protocol

interconnection, and O&M monitoring.
•	 kmesh-api: API layer provided by Kmesh for external systems, including orchestration APIs converted by xDS and O&M

monitoring channels.
•	 kmesh-runtime: Runtime that supports L3 to L7 traffic orchestration implemented in the kernel.
•	 kmesh-orchestration: L3 to L7 traffic orchestration implemented based on eBPF, such as routing, gray, and load balancing.
•	 kmesh-probe: O&M monitoring probe, which provides end-to-end monitoring capabilities.

https://gitee.com/openeuler/Kmesh

Efficient Concurrency and Ultimate Performance

059openEuler OS Technical White Paper Innovation Projects

LLVM for openEuler
Compiler SIG

The open source LLVM project is a collection of modular and reusable compiler and toolchain technologies. This project has
attracted widespread attention from developers, and commercial companies have launched their commercial compilers
based on the LLVM project. LLVM for openEuler is innovative in terms of compatibility, performance, and development-state
secure coding. It adapts to multiple hardware platforms, such as Kunpeng, Phytium, and Loongson, to fully unleash diversified
computing power.

Challenges
LLVM is an alternative compiler on openEuler and needs to bring more competitive capabilities than GCC. Specifically, it needs
to provide powerful and scalable optimization capabilities to bring more performance benefits in major computing scenarios,
such as databases, software-defined storage, and virtualization. In addition, LLVM for openEuler needs to have a complete
ecosystem to expand the user base. Specifically, it must be compatible with existing software packages, and also support the
efficient compilation of newly developed software packages.

Project Introduction
LLVM has a modular architecture design and divides the compilation process into multiple independent phases, such as the
frontend, optimization, and backend. This design makes LLVM more flexible and scalable, facilitates the independent evolution
and innovation of modules in each phase, and combines different modules through the unified intermediate representation
(IR). The LLVM project contains multiple subprojects, such as Clang, Flang, LLVM, MLIR, and LLD.

Modular, decoupled architecture with IR

C/C++
+

x86 AVX
C/C++ Rust

C/C++
+

Arm SVE

CUDA/GLES/
Vulkan

...

Arm x86 GPU NPUDSP ...

Parser IRGenSema Aliasing Tooling

Compiler frontend

CSE DCELICM IPCP ...

Optimizer

Arm RISC-Vx86 SPARC

Code generator

JIT .O.S

Emitter

Server Cloud Edge Embedded

Efficient Concurrency and Ultimate Performance

060 openEuler OS Technical White Paper Innovation Projects

Feature 1: Sanitizers

The LLVM Sanitizers are a collection of tools used for dynamic code analysis and bug detection. They help developers detect
and debug common memory errors and security problems. These tools are closely integrated with the LLVM compiler and
runtime library to provide a convenient way for detecting and diagnosing code bugs.

Feature 2: Clang Extra Tools

Clang Extra Tools are a group of additional tools provided by the LLVM project. They are used together with the Clang C/C++
compiler to support static code analysis, code refactoring, and code style check.
•	 Clang-Tidy: A powerful static code analyzer used to check for common errors, potential problems, and code style violations

in C, C++, and Objective-C code. It automatically detects and fixes problems in code, helping developers write higher-quality
code.

•	 Clang-Format: A code formatter that automatically formats C, C++, and Objective-C code. It can automatically adjust the
indentations, line feeds, and spaces of the code according to the configured rules. It helps members of a team be consistent
on the code style, improving code readability and maintainability.

•	 Clang-Check: A tool for writing a custom static analyzer. It lets developers customize static analysis rules for detecting
specific problems or potential errors in code. It provides powerful APIs and frameworks, enabling developers to create
tailored code check tools based on their requirements.

Feature 3: Clang+LLVM – the Parallel Universe Program

As the LLVM project develops quickly and developers demand more, is it possible to build openEuler releases based on
the LLVM technology stack? Compiler SIG and RISC-V SIG jointly initiate the LLVM Parallel Universe Program to explore the
possibility.

Function Usage Issues to Detect

Fast memory error detection -fsanitize=address

•	 Out-of-bounds accesses to heap/stack/globals
•	 Use-after-free
•	 Use-after-return
•	 Use-after-scope
•	 Double-free
•	 Invalid free
•	 Memory leaks

Data race detection -fsanitize=thread •	 Data races

Memory detector -fsanitize=memory •	 Uninitialized reads
•	 Use-after-destruction

Undefined behavior detection -fsanitize=undefined

•	 integer-divide-by-zero
•	 Bitwise shifts that are out of bounds for their data type
•	 Dereferencing misaligned or null pointers
•	 Signed integer overflow

Hardware-assisted memory
error detection -fsanitize=hwaddress •	 Same as AddressSanitizer

Stack protection -fsanitize=safe-stack •	 Protects programs from stack buffer overflow attacks.

Efficient Concurrency and Ultimate Performance

061openEuler OS Technical White Paper Innovation Projects

Application Scenarios
As a C/C++/Rust compiler, LLVM for openEuler can be used to build server, cloud computing, edge computing, and embedded
applications. It shortens the time of building the openEuler 23.03 Embedded image by 16%, compresses the code size by 1.5%,
and increases the CoreMark performance by 6%. As a general-purpose compiler, LLVM for openEuler is perfectly suitable for
general-purpose computing scenarios, such as databases, software-defined storage, and virtualization.

Repositories
https://gitee.com/openeuler/llvm-project (source code)

https://gitee.com/src-openEuler/clang

https://gitee.com/src-openEuler/llvm

https://gitee.com/src-openEuler/lld

https://gitee.com/src-openEuler/llvm-bolt

Benefit Analysis
•	 Basic performance: Compared with GCC, LLVM enhances compilation optimization and has more promising performance

potential. On top of that, LLVM has more powerful link-time optimization (LTO) capabilities.
•	 Software package performance: Software package maintainers can choose GCC or LLVM as the build toolchain, so that they

can channel more time on software function implementation.
•	 Code security: The Clang+LLVM combination has stricter compliance requirements for C/C++. It can detect potential defects

of software packages through static check and Sanitizer dynamic detection.

https://gitee.com/openeuler/llvm-project
https://gitee.com/src-openEuler/clang
https://gitee.com/src-openEuler/llvm
https://gitee.com/src-openEuler/lld
https://gitee.com/src-openEuler/llvm-bolt

Efficient Concurrency and Ultimate Performance

062 openEuler OS Technical White Paper Innovation Projects

OneAll
eBPF SIG

The eBPF-based programmable scheduling framework enables the kernel scheduler to extend scheduling policies and fulfill
varying loads. It has the following features:
•	 Tag management mechanism: The capability of tagging tasks and task groups is open, allowing users and kernel subsystems

to tag specific workloads by calling interfaces. The scheduler can detect tasks of specific workloads by tag.
•	 Policy extension: The programmable scheduling framework supports policy extension for completely fair scheduling (CFS)

preemption, core selection, and task execution, and adds new extension points and various auxiliary methods to extend policies.

Application Scenarios
On the programmable kernel framework, developers and system administrators can create policies and dynamically load
them to the kernel for execution.

•	 Base library functions and policy library: Provides base library functions and custom scheduling policy templates for quick
orchestration and extension of user-mode policies.

•	 Tag management mechanism: Supports user-defined extended tags for objects such as tasks, processes, groups, and users,
and bears the semantics of collaborative scheduling between user-mode and kernel-mode components.

•	 Scheduling component hook point and helper function: Supports custom policy injections for CFS core selection, task
execution, and preemption processes.

Features

hook export

event/map syscall/map

User-programmable policy

Scheduling

Kernel-programmable framework

Base policy library (.lib)

Programmable base library (tools)

Tag management (tasks/processes/groups/users)

Policy A Policy B Policy C ...

Core selection Load balancingTask selection ...

topo_helper tag_helperload_helper ...M
em

or
y

N
et

w
or

k

Fi
le

 s
ys

te
m

s
Server Cloud

Efficient Concurrency and Ultimate Performance

063openEuler OS Technical White Paper Innovation Projects

StratoVirt
Virt SIG

StratoVirt is an enterprise-class virtualization platform oriented to cloud data centers. It offers a unified architecture that
fits into the three scenarios: VMs, containers, and serverless computing. StratoVirt is lightweight and causes low memory
overhead, supports software and hardware collaboration, and is safe at the Rust language level.

Challenges
As the QEMU virtualization software has been gradually evolving, the code scale of its core open source components is
becoming increasing large, among which there is a large amount of outdated code. In recent years, CVE security vulnerabilities
frequently occur, and problems such as poor security, code redundancy, and low efficiency are awaiting handling. A
practicable solution is the rust-vmm architecture, which is developed using the memory-safe programming language Rust.
General-purpose virtualization technologies for all scenarios (data centers, terminals, and edge devices) are the future
trend, due to their security, light weight, and performance advantages. StratoVirt emerges as a next-generation virtualization
technology designed for openEuler.

Project Introduction

Features

StratoVirt is an open-source lightweight virtualization technology based on Linux Kernel-based Virtual Machine (KVM).
It reduces memory consumption and accelerates VM startup while maintaining the isolation and security capabilities of
traditional virtualization technologies. StratoVirt can be applied in serverless scenarios such as microservices or function
computing, and retains virtualization interfaces and designs for quickly importing more features to supplement general
virtualization capabilities.

StratoVirt software architecture

StratoVirt

QMP compatible APIs

Bootloader

CPU

Root port virtio-pci VFIO

System bus

PCle host

PCle bus

fwcfg pflash

Interrupt controller Legacy devices virtio-mmio

Cloud

Efficient Concurrency and Ultimate Performance

064 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
StratoVirt, iSula, and Kubernetes combine to form a complete container solution, which processes serverless loads efficiently.

Repositories
https://gitee.com/openeuler/stratovirt

The core architecture of StratoVirt is divided into three layers from top to bottom:
•	 External APIs: StratoVirt uses the QEMU Machine Protocol (QMP) to communicate with external systems, is compatible with

OCI, and supports interconnection with libvirt.
•	 Bootloader: In lightweight scenarios, StratoVirt uses a simple bootloader to load kernel images, much faster than the

traditional BIOS+Grub boot method. In general-purpose virtualization scenarios, StratoVirt supports UEFI boot.
•	 Emulated mainboard – microVM: To improve performance and reduce the attack surface, StratoVirt minimizes the emulation

of user-mode devices. With the emulation capability, KVM-based devices and paravirtualization devices are available, such
as generic interrupt controller (GIC), serial, real-time clock (RTC), and virtio-mmio devices.

•	 General-purpose VMs: StratoVirt provides an advanced configuration and power interface (ACPI) table to implement
UEFI boot. Virtio-pci and Virtual Function I/O (VFIO) passthrough devices can be added to further improve the VM I/O
performance.

https://gitee.com/openeuler/stratovirt

Efficient Concurrency and Ultimate Performance

065openEuler OS Technical White Paper Innovation Projects

Compiler Plugin Framework
Compiler SIG

The compiler plugin framework is a plugin development platform that provides MLIR-oriented interfaces, helping develop a
plugin while applying it on multiple compilers. The framework supports and maintains common capabilities such as plugin
compatibility and integrity checks.

Application Scenarios
Scenario 1: Compilation tool build and integrity verification
The compiler plugin framework can work as the development platform to build compilation tools while applying them on
multiple compilers such as GCC. The framework supports and maintains common capabilities such as compatibility and
binary integrity checks.

Scenario 2: Quick enabling and verification of compilation tools
The compiler plugin framework helps develop compilation tools as plugins to run on mainstream compilers such as GCC.
There is no need to modify the source code of the compilers, streamlining development efficiency.

Repositories
https://gitee.com/openeuler/pin-gcc-client

https://gitee.com/openeuler/pin-server

Challenges
There are two major compiler frameworks: GCC and LLVM. A large number of compilation tools and extended compilation
capabilities are developed based on the two compiler frameworks. The code for one compiler framework cannot be reused on
another. Therefore, compilation tool development faces the following difficulties:
•	 The compiler needs in-depth modification, which also complicates compiler maintenance.
•	 Repetitive coding occurs when you develop the compilation tool based on the two compilation frameworks.
•	 Lack of base capabilities such as compatibility increases tool development and maintenance costs.

Project Introduction

Features
•	 MLIR-based plugin development and easy conversion of

IRs such as GIMPLE.
•	 The compiler plugin framework supports 19 classes of

GIMPLE statements.
•	 Common capabilities such as compatibility and binary

integrity checks.
•	 Monitoring and verifying plugin status, such as for compiler

security and operations.
•	 Executing plugin clients as GCC plugins, so functions can

run without modifying the GCC compiler code.
•	 Link time optimization (LTO).

Plugin code Mainstream compilers such as GCC

Plugin server Plugin client

Cross-process communication

MLIR Plugin
development API

Logs

Communication engine

Runtime monitor

Compatibility verification Integrity check

Plugin event management

Logs

Communication engine

Runtime monitor

IR conversion

Compiler plugin framework

Server Cloud Edge Embedded

https://gitee.com/openeuler/pin-gcc-client
https://gitee.com/openeuler/pin-server

Robust Security and Rocksolid Reliability

066 openEuler OS Technical White Paper Innovation Projects

IMA
Security Facility SIG

The Integrity Measurement Architecture (IMA) is a mandatory access control (MAC) subsystem that provides file integrity
protection in Linux kernel 2.6 and later. With IMA digest lists, the IMA generates and protects file measurement digest base
values in the build phase, verifies imported measurement base values in the boot phase, and protects the integrity of key
system files during the running phase.

Challenges
As the operating environment on the network is complex, it may be exposed to various types of attacks when they are
running. Attackers can replace the executable files carried by the system or implant unknown malicious programs, causing
unpredictable damage to the system. The IMA is an extension to the trusted boot mechanism and provides enhanced user-
mode file integrity protection based on kernel-mode trustworthiness.

The IMA can measure files accessed through system calls such as execve() and mmap() based on user-defined policies. The
measurement result can be used for measurement and appraisal:
•	 Measurement: Detects accidental or malicious modifications to files, with local or remote attestation.
•	 Appraisal: Measures a file and compares it with a pre-stored reference value to protect the integrity of the local file.

The native IMA feature of the Linux kernel is confronted with the following shortcomings:
•	 Complicated deployment: The native IMA stores file integrity information through file extended attributes. To enable IMA

verification, you need to set the system to fix mode, generate and mark the extended attributes, and then reboot the system
to enter the enforce mode.

•	 Performance deterioration: In the native IMA, each time file measurement is triggered, the Platform Configuration Registers
(PCRs) of the trusted platform module (TPM) are extended. The TPM is a low-speed chip, and the extension process is very
time consuming. Besides, each time file verification is triggered, the signature or hash-based message authentication code
(HMAC) stored in the file extended attributes is verified. The verification process is also long and deteriorates performance.

Project Introduction

Features

The IMA is a trusted computing implementation method in openEuler, connecting trusted applications to the trusted OS
along the trust chain. IMA digest lists are provided by openEuler to enhance the native kernel integrity protection mechanism,
replacing the native IMA mechanism for greater file integrity protection.

Digest lists are binary data files in a special format. Each digest list corresponds to an RPM package and records the hash
values of protected files (executable files and dynamic library files) in the RPM package.

After the boot parameters are correctly configured, the kernel maintains a hash table (invisible to users) and provides
interfaces (digest_list_data and digest_list_data_del) that update the hash table through securityfs. The digest lists are signed
using a private key when they are built. When uploaded to the kernel through interfaces, the digest lists are verified by a public
key in the kernel.

Server Cloud Edge Embedded

Robust Security and Rocksolid Reliability

067openEuler OS Technical White Paper Innovation Projects

Application Scenarios
IMA digest lists are used in data center, cloud computing, edge, and embedded scenarios to protect system file integrity,
representing a key technology in trusted computing. IMA digest lists help set up a trusted local environment so that the trust
chain of trusted computing can be extended to the application layer. In addition, measurement logs can be used for remote
attestation to verify whether the files loaded to the tested platform and the system running status are trusted.

Repositories
https://gitee.com/src-openEuler/digest-list-tools

https://gitee.com/openeuler/digest-list-tools

https://gitee.com/openeuler/kernel

When IMA appraisal is enabled, each time an executable file or dynamic library file is accessed, the hook in the kernel is
invoked to calculate the hash values of the file content and extended attributes, and search the kernel hash table for the hash
values. If the calculated hash values match the hash table, the file is executed. Otherwise, the file access is denied.

digest_list_data

/path/to/digest_ list

digest_list_data_del

Hash table

Kernel SpaceUser Space

echo Verify & parse

echo Verify & parse

Calculate the
hash value of

the file extended
attributes.

Calculate the
hash value
of the file
content.

File access
invokes the hook

in the kernel.

Within
the protection

scope specified
by the
policy?

Found in
the kernel

hash table?

Access deniedNoNo

No

YesYesYes Access allowed
Consistent with
security.ima?

https://gitee.com/src-openEuler/digest-list-tools
https://gitee.com/openeuler/digest-list-tools
https://gitee.com/openeuler/kernel

Robust Security and Rocksolid Reliability

068 openEuler OS Technical White Paper Innovation Projects

KunpengSecL
Security Facility SIG

Kunpeng Security Library (KunpengSecL) is a fundamental security software component running on Kunpeng processors. In
the early stage, KunpengSecL focuses on trusted computing fields such as remote attestation.

Challenges
Server security technologies for trusted computing, confidential computing, and trusted AI are developing rapidly. The security
features provided by server hardware are far from being easy to use for common software developers and users. Security
software middleware is a practicable solution to shorten the gap between software developers and hardware security features.

Project Introduction

Each KunpengSecL feature comprises components and services.
•	 The components are deployed on worker nodes that provide resources (compute, storage, and network) for user workloads.

They encapsulate platform security and trustworthiness capabilities into software interfaces, which are available to the
services.

•	 The services are deployed on independent management nodes to aggregate security and trustworthiness capabilities from
all worker nodes and provide them for users and specified management tools. The services are tailored for system security
and trustworthiness design.

Remote attestation is the first KunpengSecL security feature, and is an end-to-end trusted computing solution that obtains the
trustworthiness status of software and hardware on worker nodes. Various resource management tools can formulate policies
based on trustworthiness reports to schedule and use server resources in a differentiated manner.

The remote attestation feature of KunpengSecL supports:
•	 TPM-based remote attestation for universal platforms.
•	 Remote attestation for the Kunpeng trusted execution environment (TEE).

Applications

KunpengSecL
RA Service

Kernel

F/W

Chip

RoT

RA Client

BIOS BMC Trusted F/W

Client API REST API Privacy CA Verifier TEE AK Issuer

CPU NPU GPU IPU xPU

TPM TCM TPCM DICE

Chip driver RoT driver TEE driver

IMA SELinux Trusted application

TEE OS

TB Provisioner RA Agent RoT SW stack RA Hub xPU RA Client

Network Mgmt OpenStack K8s SIEM Other

Server Cloud Edge Embedded

Robust Security and Rocksolid Reliability

069openEuler OS Technical White Paper Innovation Projects

Application Scenarios

Scenario 1: trusted cloud hosts

By combining trusted boot of cloud physical servers and remote attestation of the platform, trusted verification can be
performed on the host environment where VMs are running to provide underlying security support for cloud host users. In
addition, the virtual Trusted Platform Module (vTPM) is used to support trusted boot and remote attestation of VMs. In this way,
users can perceive the security and trustworthiness status of trusted cloud hosts, thereby enhancing user confidence regarding
cloud hosts.

Scenario 2: key cache management

Remote attestation for the platform and TEE and local attestation for the TEE are used to harden security in scenarios where
TAs obtain and cache keys from enterprises' or cloud Key Management Service (KMS), ensuring the security of keys in
transmission, storage, and use.

Repositories
https://gitee.com/openeuler/kunpengsecl/

https://gitee.com/openeuler/kunpengsecl/

Robust Security and Rocksolid Reliability

070 openEuler OS Technical White Paper Innovation Projects

secCrypto
Security Facility SIG

openEuler provides support for cryptographic services such as Chinese cryptographic algorithm libraries, certificates, and
secure transmission protocols. Key security features that use cryptographic algorithms, including OS user authentication,
drive encryption, and integrity protection, are enhanced by the Chinese cryptographic algorithms (also known as ShangMi
algorithms, or SM for short).

Challenges
SM algorithms are being increasingly adopted in the industry. However, most open source software in openEuler's repository
that uses cryptographic algorithms does not support SM algorithms. As a result, openEuler and its upper-layer applications
cannot utilize SM algorithms natively to ensure service security.

In addition, the current SM algorithm implementations still bring performance loss, which need to be optimized to fully realize
the potential of software and hardware collaboration.

Project Introduction

Features

Currently, the following SM features are supported by openEuler:
•	 User-mode algorithm libraries, such as OpenSSL and Libgcrypt, support SM2, SM3, and SM4.
•	 OpenSSH supports SM2, SM3, and SM4.
•	 OpenSSL supports the Transport Layer Cryptography Protocol (TLCP) stack of the SM standards.
•	 SM3 and SM4 are supported for drive encryption (dm-crypt and cryptsetup).
•	 SM3 is supported for password encryption in user identity authentication (pam, libuser, and shadow).
•	 SM3 is supported for data digest in Advanced Intrusion Detection Environment (AIDE).
•	 SM2, SM3, and SM4 are supported in the kernel cryptographic framework (crypto), allowing algorithm performance

optimization using instruction sets such as AVX, CE, and NEON.
•	 The SM3 data digest algorithm and SM2 certificate are supported in Integrity Measurement Architecture and Extended

Verification Module (IMA/EVM) of the kernel.
•	 The SM2 certificate is supported in kernel module signing and module signature verification.
•	 SM4-CBC and SM4-GCM algorithms are supported in Kernel Transport Layer Security (KTLS).
•	 OS secure boot (shim and grub) supports signature verification of SM certificates.
•	 	SM3 and SM4 are supported in the Kunpeng Accelerator Engine (KAE).

Server Cloud

Robust Security and Rocksolid Reliability

071openEuler OS Technical White Paper Innovation Projects

Application Scenarios
SM algorithm stack of openEuler is mainly used in server and cloud scenarios, supporting SM2, SM3, and SM4 in both kernel
and user modes. openEuler, now has been reconstructed for SM algorithms, serving as the information system foundation to
enable SM algorithms for various industries and help them meet the cryptography assessment.

Repositories
https://gitee.com/src-openEuler/openssl

https://gitee.com/src-openEuler/nss

https://gitee.com/src-openEuler/openssh

https://gitee.com/src-openEuler/pesign

https://gitee.com/src-openEuler/shim

https://gitee.com/src-openEuler/aide

https://gitee.com/src-openEuler/pam

https://gitee.com/src-openEuler/libxcrypt

https://gitee.com/openeuler/kernel

openEuler SM planning overview

Certificate authority

Applications

C
ry

pt
og

ra
ph

y
ap

pl
ic

at
io

n
C

ry
pt

og
ra

ph
y

se
rv

ic
e

OS

Hardware

HTTPS server

Security protocol stack

SM certificates and keys

SM algorithm libraries Random
number

generator

Hardware algorithm enablement

Confidential
computing service

HTTPS client

Data in runtime, transmission, and storage

Browser SSH client

Cryptographic coprocessor

Supported

TEE

CPU

SM1 SM7 SF33

SM9ZUC

Cryptographic instruction set

Cryptographic device

USBKey

BIOS

OS root certificate

Remote attestation server

Trusted module

Not supported or involved

Authenticity protection

Identity authentication

Confidentiality protection

Drive encryption

Integrity protection

Secure boot Trusted boot

Kernel module
signature verification

Static integrity protection

Dynamic integrity protection

Certificate generation Data signing Data signature verification Certificate revocation

Transmission layer protocols Application layer protocolsNetwork layer protocols

SM2 SM3 SM4

Hardware acceleration enablement

Application
digital signature

Secure boot certificate

https://gitee.com/src-openEuler/openssl
https://gitee.com/src-openEuler/nss
https://gitee.com/src-openEuler/openssh
https://gitee.com/src-openEuler/pesign
https://gitee.com/src-openEuler/shim
https://gitee.com/src-openEuler/aide
https://gitee.com/src-openEuler/pam
https://gitee.com/src-openEuler/libxcrypt
https://gitee.com/openeuler/kernel

Robust Security and Rocksolid Reliability

072 openEuler OS Technical White Paper Innovation Projects

secGear
Confidential Computing SIG

secGear is a security application development kit (SADK) that delivers confidential computing for the computing industry. It
is a unified development framework that masks the differences between trusted execution environments (TEEs) and software
development kits (SDKs). It provides development tools and common security components to help security application
developers focus on services and improve development efficiency.

Challenges
The rapid development of confidential computing technologies allows chip vendors to launch their own confidential
computing solutions, but it poses the following problems for security application developers:
•	 Ecosystem isolation: To deploy a confidential computing application on a different platform, secondary development is

necessary based on the SDK of the target platform.
•	 Difficult development: Some platforms provide only awkward bottom-layer interfaces, which come at a high cost in terms of

learning and development.
•	 Low performance: A confidential computing application is designed to run in both the rich execution environment (REE) and

TEE. However, frequent context switches between these two environments can significantly degrade performance.

Application Scenarios
secGear is widely used in scenarios such as databases, hardware security module alternatives, AI model and data protection,
and big data. It helps customers in industries such as finance and telecom quickly port services to confidential computing
environments and protect data runtime security.

Repositories
https://gitee.com/openeuler/secGear

Project Introduction
secGear features the following benefits:
•	 Architecture compatibility: It masks differences

between different SDK APIs to share the same set of
source code across multiple architectures.

•	 Easy development: The development tools and
common security components allow users to focus
on services, significantly improving development
efficiency.

•	 High performance: The switchless feature improves
the interaction performance between the REE and
TEE by more than 10-fold in typical scenarios such as
frequent interactions between the REE and TEE and
big data interaction.

secGear architecture

Scenario Financial
risk control

Hardware security
module alternative

Fully-encrypted database
with software and

hardware integrated

AI model and
data protection

SDK SGX SDK TEEOS SDK QingTian SDK

Hardware Intel SGX Kunpeng TrustZone
Huawei Cloud

QingTian Enclave

Development
framework

Component & Service

Secure channel ...

secGear framework

Unified SDK APIs

Developer tools Switchless Remote attestation

Server Cloud

https://gitee.com/openeuler/secGear

Robust Security and Rocksolid Reliability

073openEuler OS Technical White Paper Innovation Projects

secPaver

secPaver is a SELinux policy development tool. Its core concept is to abstract and encapsulate a group of common policy
description methods and policy operation interfaces. During policy development, developers do not need to understand
security mechanism details but rather use secPaver to configure policy descriptions. The specific security policies are
automatically generated by secPaver.

Challenges
Although Linux can be hardened by mandatory access control (MAC) mechanisms such as SELinux and AppArmor, they have
yet to be widely used in actual scenarios due to the complicated security policy configurations:
•	 SELinux contains hundreds of thousands of policy rules. At least hundreds of rules are required to configure a security policy

for a single application.
•	 SELinux policy functions as an allowlist. If a policy is not correctly configured, applications will not run as expected.
•	 Application developers are not skilled enough in defining security policies, which results in the security policies of most

applications not being defined during the development process. Hence, system administrators are unable to understand the
running and resource access of each application and cannot define detailed security policies for each application.

To address these problems, a simplified security policy configuration tool is required to help developers and system
administrators quickly define security policies for applications to run.

Project Introduction

Features

An application security policy sets security rules for the running of an application, where only behavior that complies with the
rules is allowed. Proper security policies can effectively improve system security and resilience, so that even if an application is
attacked, actions beyond the rules cannot be performed.

The core of security policies is access control. That is, the access of applications to resources, such as file read/write and
socket usage, is checked by the OS to determine whether the access needs to be blocked. openEuler provides secPaver to help
generate security policies for applications, simplifying the management of complex security policies by system administrators.

Compared with traditional security policy development methods, secPaver reduces the knowledge requirements on security
mechanisms for developers, simplifies the policy development process, improves policy development efficiency, and enables
the simultaneous release of software and security policies.

Server Cloud Security Facility SIG

Robust Security and Rocksolid Reliability

074 openEuler OS Technical White Paper Innovation Projects

Manual or semi-automatic development can slow down the development process.
Continuous iterative development requires a long period of time.
Application security behavior is not fully covered.
Comprehensive knowledge of security mechanisms by developers is required.

Automatic policy generation can speed up the development process.
Application security behavior is fully covered.
Basic knowledge of security mechanisms by developers is required.

Application trail run

Audit data collection

Security policy development

Traditional security
policy development

Development team O&M team
(security administrator)

Development team

Security policy development
with secPaver

Security policy development
Who?
When?
Quality?

Application design
Application behavior collection Application development

Security behavior description

Security policy generation

Security policy release

Simultaneous deployment of application and security policy

Application release

Security policy deployment

Application development

Application deployment

Po
lic

y
op

tim
iz

at
io

n

Application design

secPaver is written in Go and adopts the client-server architecture. Users can use client tools to interact with server processes
to develop security policies. The server is a systemd service process that provides specific policy development functions. The
go-plugin mechanism used by secPaver encapsulates function implementations of different security mechanisms in plugins
for the server process to load and invoke. Currently, secPaver supports SELinux policy development, and in the future, it will
support the policy development of AppArmor and other security mechanisms.

Client tools Client CLI tool

Server
processes

Policy
function
plugins

System
policies

gRPC/protobuf

Project management Plug-in management Policy management

GUI (under development)

Generation policy management

secPaver generation policies

Policy source files

Policy installation and
uninstallation scripts

Other policy files

Released

SELinux policy plugins
Automatic policy

generation
One-click policy

loading/unloading
Automatic policy

completion
Container policy
enhancement

AppArmor policy plugins
Automatic policy

generation
One-click policy

loading/unloading

Automatic policy completion

Project file management

secPaver project

Project definition files

Resource information files

Application behavior description files

Other project files

Security policy plugin management

Go plugin

Policy APIs (libselinux, libsepol, libapparmor, and others)

openEuler system policies

Under development

Robust Security and Rocksolid Reliability

075openEuler OS Technical White Paper Innovation Projects

Repositories
https://gitee.com/src-openEuler/secpaver

https://gitee.com/openeuler/secpaver

Application Scenarios
secPaver assists developers in security policy generation during application development. From a security policy development
cycle perspective, the functions of secPaver cover the policy design, iterative development, and policy release processes.

secPaver: End-to-End Policy Development Tool

Policy Development Policy Test Policy Release

A unified file format
for policy configura-
tion shields security

mechanism details to
the maximum extent.

A unified operation
interface can be used to
query, load, and unload

different security
mechanism policies.

Audit logs are
automatically collected
and analyzed to find

and supplement
missing policies.

WebUI tool further
simplifies policy
configuration.

One-click generation
of multiple security
mechanism policies

eliminates the need of
manual compilation.

Policy packages can
be exported in one

click with automatically
generated policy

installation scripts.

Policy Design

https://gitee.com/src-openEuler/secpaver
https://gitee.com/openeuler/secpaver

Robust Security and Rocksolid Reliability

076 openEuler OS Technical White Paper Innovation Projects

sysMaster
Dev-utils SIG

sysMaster is a collection of ultra-lightweight and highly reliable service management programs. It provides an innovative
implementation of PID 1 to replace the conventional init process. Written in Rust, sysMaster is equipped with fault monitoring,
second-level self-recovery, and quick startup capabilities, which help improve OS reliability and service availability.

Challenges
In Linux, PID 1, traditionally the init process, is the parent of all user-mode processes. The init process is the first process that
is created when the system is started. It starts and manages all other processes and ends them when the system is shut down.
In modern Linux distributions, init is usually replaced by the systemd process. However, the concept of PID 1 (whose minimum
functions include system startup and zombie process recycling) still exists.

PID 1 is a key system process and is responsible for system initialization and runtime service management. It faces the
following challenges:
•	 Poor reliability: The function problem of PID 1 has a bigger impact. When PID 1 is faulty, the OS must be restarted to rectify

the fault.
•	 High complexity: systemd becomes the de facto standard for PID 1, introducing many new concepts, tools, and extended

components that depend on each other. It is difficult to tailor the components based on actual application scenarios.

Project Introduction

Features

sysMaster manages processes, containers, and VMs centrally and provides fault monitoring and self-healing mechanisms to
help deal with Linux initialization and service management challenges. All these features make sysMaster the ideal choice for
server, cloud computing, and embedded scenarios.

sysMaster divides the functions of traditional PID 1 into a 1+1+N architecture based on application scenarios. As shown in the
figure, sysMaster consists of three components:
•	 sysmaster-init, which is a new implementation of PID 1, features simplified functions, a thousand lines of code (KLOC),

and ultimate reliability. It is applicable to embedded systems with functions such as system initialization, zombie process
recycling, and keep-alive monitoring.

•	 sysmaster-core undertakes the core service management functions and incorporates the reliability framework to enable live
updates and quick self-recovery in the event of crashes, ensuring 24/7 service availability.

•	 sysmaster-extends offers a collection of components (such as devMaster for device management and busMaster for bus
communication) that deliver key system functions, which are coupled in traditional PID 1. You can choose the components
to use as required.

Server Cloud Edge Embedded

Robust Security and Rocksolid Reliability

077openEuler OS Technical White Paper Innovation Projects

sysMaster architecture

Conventional server OSs:
database/SDS

systemd ecosystem

systemd
compatibility

tools

Job scheduler

Reliability framework

sysmaster-core

sysmaster-init

Parallel startup

On-demand startup

Delayed loading

Self-recovery Fault checkStatus export Data restorationLive update

Container-optimized OSs:
container engines/

container applications

Desktop OSs:
KDE/GNOME

udevd sd-bus ...

sysmaster-exts

devMaster busMaster ...

N

1

1Process recycling Keep-alive monitoring System initialization

Event driver

Unit manager

unitPlugin

Application Scenarios
sysMaster can be used in containers, virtualization, servers, and edge devices to deliver a reliable and lightweight experience.

Repositories
https://gitee.com/openeuler/sysmaster

Featuring a simple component architecture, sysMaster improves the scalability and adaptability of the overall system
architecture while reducing development and maintenance costs. sysMaster provides the following advantages:
•	 Live updates and self-recovery in seconds in the event of crashes
•	 Faster startup speed with lower memory overhead
•	 Plugin-based service types that can be dynamically loaded as required
•	 Migration tools that provide seamless migration from systemd to sysMaster
•	 Unified interfaces that work with the iSulad container engine and QEMU for management of container and virtualization

instances

In the future, sysMaster will extend to more scenarios and have its architecture and performance further optimized for
higher scalability and adaptability. In addition, new features and components will be developed to meet the requirements of
container, virtualization, and edge computing scenarios. These features will make sysMaster a powerful, efficient, and user-
friendly system management framework.

https://gitee.com/openeuler/sysmaster

Simplified O&M and Development

078 openEuler OS Technical White Paper Innovation Projects

A-Ops
Ops SIG

A-Ops is an OS-oriented O&M platform that provides intelligent O&M solutions covering data collection, health check, fault
diagnosis, and fault rectification.

Challenges
In recent years, the implementation of cloud-native, serverless, and other technologies has made cloud infrastructure
O&M increasingly challenging. Specifically, the characteristics of sub-health problems, such as intermittent emergence,
short duration, multiple problem types, and wide involvement, have brought great challenges to cloud infrastructure
troubleshooting. The sub-health fault diagnosis in Linux poses even higher requirements for capabilities such as observability,
massive data management, and generalization of AI algorithms. In openEuler, the existing O&M methods fail to detect and
locate sub-health problems promptly due to insufficient capabilities, including online continuous monitoring, refined
observation from the application perspective, and AI automatic analysis based on full-stack observation data. The difficulties
in diagnosing sub-health faults are as follows:
•	 Full-stack non-intrusive observation
•	 Continuous, refined, and low-resource consumption monitoring
•	 Adaptive exception detection and visualized fault deduction for various scenarios
•	 Patch management and application without affecting services

Project Introduction

Features

The A-Ops project includes the following
sub-projects: fault detection (gala),
fault locating (X-diagnosis), and defect
rectification (Apollo).

gala: gala utilizes a non-intrusive
observation technology based on the
eBPF + Java agent and provides intelligent
assistance to diagnose sub-health faults,
such as performance jitter, increased error
rate, and slow system response. The figure
shows the architecture of gala.

Management node gala-anteater: Visualized root cause deduction

gala-spider: Full process topology

Read WritePrometheus ArangoDB Topology calculation

OpenTelemetry ecosystem interface

gala-gopher: Non-intrusive converged monitoring

Refined kernel
monitoring

Language runtime
monitoring

Basic devices

Physical machine Virtual machine Container Public cloud Hybrid cloud

openEuler, iSula, and StratoVirt

System call monitoring Layer 4 and layer 7
full-process monitoring

Production node

Real-time topology-based
visualized deduction

Statistical model-based
fault detection

Server Cloud

Simplified O&M and Development

079openEuler OS Technical White Paper Innovation Projects

gala has the following features:
•	 Online application performance jitter diagnosis: Online performance diagnosis for database applications, to identify issues

including network issues (packet loss, retransmission, latency, and TCP zero window), I/O issues (slow drives and I/O
performance deterioration), scheduling issues (high system CPU usage and deadlock), and memory issues (out of memory
and leakage).

•	 System performance diagnosis: TCP and I/O performance jitter diagnosis in common scenarios.
•	 System risk inspection: Second-level inspection on kernel protocol stack packet loss, virtualization network packet loss, TCP

exceptions, I/O latency, system call exceptions, resource leakage, JVM exceptions, application RPC exceptions (including
error rates and latency of eight common protocols), and hardware faults (uncorrectable errors and drive media errors).

•	 Full-stack I/O monitoring: Full-stack I/O monitoring for the SDS scenario, covering the process I/O and block layer I/O of the
guest OS, virtual storage layer frontend I/O, and SDS backend I/O.

•	 Refined performance profiling: Online real-time continuous collection of performance statistics, including CPU performance,
memory usage, resource usage, and system calls in high precision (collected every 10 ms) and multiple dimensions (covering
system, process, container, and pod) to generate flame and timeline graphs.

•	 Full-stack monitoring and diagnosis of Kubernetes pods: Real-time topology of pod cluster service flow, pod performance
monitoring, DNS monitoring, and SQL monitoring from the perspective of Kubernetes.

X-diagnosis: X-diagnosis is an O&M suite for Linux, providing a fault locating toolkit, system exception inspection, and
enhanced ftrace functions.

X-diagnosis has the following features:
•	 Various fault locating tools: Locates faults related to the network, I/O, CPU scheduling, file system, and memory, such as,

ICMP, TCP, and UDP packet loss and exceptions, read-only system files, and slow I/O.
•	 Abundant inspection items for system problems: Inspects network, CPU scheduling, drives, services, configurations, and

system resources to detect exceptions such as incorrect DNS configurations, high CPU usage, full drive space, time changes,
and excessive processes. Inspection results can be output to logs and interfaces.

•	 eftrace and ntrace for system debugging and analysis: eftrace is an enhanced version of ftrace that supports automatic
calculation of structure offsets, making ftrace more accessible. ntrace can quickly output key parameters of the kprobe
protocol stack function to assist in locating protocol stack process problems. What's more, the parameters can be filtered by
IP address, port, and protocol.

Apollo: The Apollo project is an intelligent patch management framework. It provides real-time inspection of CVEs and bugs
and cold and hot patching, in order to implement automatic discovery and zero-interruption fixing.

Apollo has the following features:
•	 Patch service: Cold and hot patch subscription allows patches to be acquired online.
•	 Intelligent patch inspection: Supports CVE/bug inspection and notification based on single-node systems and clusters,

hybrid management of cold and hot patches, and one-click repair and rollback, significantly reducing patch management
costs.

ragdoll: More than 50% of OS faults are caused by incorrect configurations. ragdoll can monitor system configurations to
detect real-time configuration changes and quickly locate incorrect configurations.
•	 Configuration baseline: Configuration file types, including user-defined configuration files, can be added to the cluster

baseline through plugins.
•	 Configuration source tracing: Automatically detects system configuration file changes in the backend and notifies the

administrator of the changes through alarms and emails.
•	 Configuration locating: Quickly locates the cause of configuration file changes by monitoring file operations through the

eBPF. (This function is under development.)

Simplified O&M and Development

080 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
A-Ops is applicable to openEuler and other Linux distributions in database, SDS, virtualization, and cloud-native scenarios.
A-Ops provides full-stack monitoring capabilities for users in industries such as finance, telecom, and Internet to diagnose sub-
health faults, and promptly checks configuration errors caused by manual operations in cluster scenarios. In addition, A-Ops
manages cold and hot patches in a unified manner to simplify patch management and directly provides hot patches for high-
severity kernel CVEs to prevent the system from being restarted when dealing with the emergent kernel issues.

Repositories
https://gitee.com/openeuler/A-Ops

https://gitee.com/openeuler/aops-apollo

https://gitee.com/openeuler/X-diagnosis

https://gitee.com/openeuler/gala-gopher

https://gitee.com/openeuler/gala-spider

https://gitee.com/openeuler/gala-anteater

A-Ops architecture

Intelligent
O&M

platform

A-Ops

Hardware

Peripheral
packages

Kernel

Peripherals

Memory

CPU

gala-x ragdoll diana Apollo

Log analysis

Architecture awareness Exception detection Precise measurement Intelligent algorithms

Root cause analysis Online optimization Application topology

System data lake

User-mode hot patch Intelligent system proxy
Automatic

system configuration

System service hot replacement (systemd, D-Bus, and QEMU)

Kernel hot replacement Module hot replacement Kernel hot patch

Intel

Kunpeng Status saving and restoration

NIC Drives ...

In
te

lli
ge

nt
 p

ro
be

Im
pe

rc
ep

tib
le

 u
pg

ra
de

https://gitee.com/openeuler/A-Ops
https://gitee.com/openeuler/aops-apollo
https://gitee.com/openeuler/X-diagnosis
https://gitee.com/openeuler/gala-gopher
https://gitee.com/openeuler/gala-spider
https://gitee.com/openeuler/gala-anteater

Simplified O&M and Development

081openEuler OS Technical White Paper Innovation Projects

CPDS
CloudNative SIG

CPDS, short for container problem detection system, monitors and detects top and sub-health faults in containers.

Challenges
As businesses grow larger and larger, and container clusters continue to expand, IT O&M finds itself under more pressure.
Service interruptions caused by software and hardware faults have become one of the major factors that affect stability. Most
existing fault detection solutions for container clusters in the industry are based on cluster component status detection, service
entry monitoring, and user-defined interface liveness probing. These technologies struggle to detect or identify the sub-health
status of services and cannot deliver fault diagnosis or execution policies. As a result, key faults cannot be handled.

Project Introduction

Features

CPDS adopts the microservice architecture. The components of its four component groups communicate with each other through APIs.

Client

Diagnosis result display

Write

Write

Write

Offline/Resumable upload
of detection data

Online upload
of detection data

Exception
detection

module

Data
collection

module

Diagnosis

Rule delivery

Rule delivery

Exception
detection

Data analysis

Online upload

Data collection

Offline/Resumable upload

Top
fault/sub-health

diagnosis
module

Diagnosis rule setting User
interaction

moduleVisualized diagnosis result

Persistent diagnosis
result

Persistent
detection data

Fault/Sub-health
diagnosis result

Exception
detection result

Pre-processed data

Persistent data Raw data

Exception rules

Diagnosis configuration

Diagnosis rules

Real-time result displayHistorical result display

Container data source Node data source

Cloud Edge

Simplified O&M and Development

082 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
CPDS is mainly used in the infrastructure of cloud-native scenarios to detect container cluster faults.

Repositories
https://gitee.com/openeuler/Cpds

•	 cpds-agent, the data collection component, collects raw container and system data from nodes in the cluster.
•	 cpds-detector, the exception detection component, analyzes the raw data of each node based on configured exception rules

to check whether the node is abnormal.
•	 cpds-analyzer, the fault/sub-health diagnosis component, performs health analysis on abnormal nodes based on configured

diagnosis rules and determines the current health status of the nodes.
•	 cpds-dashboard, the user interaction component, provides a web UI to display the health status of nodes in the cluster and

set and deliver diagnosis rules.

Cluster Information Collection

Node agents are implemented on host machines to monitor key container services using systemd, initv, eBPF, and other
technologies. These agents also keep track of the application status, resource consumption, key system function execution
status, and I/O execution status of containers. The collected information covers network, kernel, and drive LVM of the nodes.

Cluster Exception Detection

Raw data from each node is collected to detect exceptions based on exception rules and extract key information. Then, the
detection results and raw data are uploaded online and saved permanently.

Fault/Sub-Health Diagnosis on Nodes and Service Containers

Nodes and service containers are diagnosed based on exception detection data. Diagnosis results are saved permanently and
can be displayed on the UI for users to view real-time and historical diagnosis data.

https://gitee.com/openeuler/Cpds

Simplified O&M and Development

083openEuler OS Technical White Paper Innovation Projects

CPM4OSSP
Ops SIG

Centralized management platform for operating system software packages (CPM4OSSP) is designed by Linx Software for
unified management of software package installation, upgrade, and uninstallation on multiple servers.

Challenges
Currently, most Linux distributions run commands on a single host or use a remote tool such as Ansible to download
software packages from the source server. Such a method fails to deliver centralized management of software packages
and repositories on multiple hosts. To address this issue, CPM4OSSP provides a centralized and unified software package
management solution for multiple nodes.

Project Introduction
CPM4OSSP consists of the following modules:
•	 Software repository management module, which can be used to generate, view, deliver, edit, and delete software repository

templates, helping O&M personnel quickly set up dependency environments.
•	 Software package management module, which provides software package installation, uninstallation, upgrade, and rollback

capabilities, simplifying software package maintenance and improving O&M efficiency.
•	 Audit management module, which audits all user operations to facilitate fault locating.
•	 User management module, which separates the privileges of system users, security users, and audit users to improve

platform security and stability.

Application Scenarios
CPM4OSSP provides users with the following functions:
•	 Simplified management UI that supports privilege-based user management
•	 Host software repository updates and rollbacks
•	 Node software package update check, one-click upgrade, and search
•	 Software package management by category
•	 Software package uninstallation
•	 Operation audit

Repositories
https://gitee.com/openeuler/CPM4OSSP-UI

https://gitee.com/openeuler/CPM4OSSP-SERVER

https://gitee.com/openeuler/CPM4OSSP-PROXY

Server

https://gitee.com/openeuler/CPM4OSSP-UI
https://gitee.com/openeuler/CPM4OSSP-SERVER
https://gitee.com/openeuler/CPM4OSSP-PROXY

Simplified O&M and Development

084 openEuler OS Technical White Paper Innovation Projects

CTinspector
Ops SIG

CTinspector uses the eBPF VM technology to implement multi-node stateful monitoring and network traffic analysis, helping
quickly locate network performance bottlenecks.

Challenges
Traditional performance monitoring tools lack the capability of multi-node stateful monitoring and cannot be programmed in
real time to cope with rapid requirement changes.

Application Scenarios
To locate a network fault, O&M personnel often need to dump Open vSwitch flow tables. However, this can be inconvenient
due to the large number of flow tables, and it can take a long time to dump them all. Therefore, it is necessary to filter the flow
tables. Traditional tools have difficulties in adding filtering fields online or performing stateful filtering, such as identifying
the three flows that forward the most packets. To address this issue, O&M personnel can use CTinspector to pass the flows to
an eBPF program. This program can then determine which flows to filter and count the number of packets to identify the top
three flows that forward the most packets.

Repositories
https://gitee.com/openeuler/CTinspector

Extended
kernel functions

Application eBPF VM runner (library)

Checkpoint

Checkpoint

Checkpoint

Basic
kernel

functions

eBPF
compiler JIT URL routing

Tx Rx

eBPF
linker loader

Memory
mapper

Transporter
Scheduler Executor

Project Introduction

The access control list (ACL) based on the eBPF VM turns the traditional iptables rules into an eBPF program, simplifying ACL
function development and improving delivery speed. In addition, RPC based on the eBPF VM can save network bandwidth,
reduce latency, and adaptively diagnose network problems based on scripts compiled by O&M personnel.

The server framework of CTinspector consists of modules including the kernel functions, loader, compiler, router, transporter,
scheduler, executor, and memory mapper. When an external task is delivered, the script content, execution context, and
calculation results are encapsulated in the eBPF VM. In this way, non-interactive chained propagation can be implemented,
greatly improving execution and calculation efficiency.

Server Cloud

https://gitee.com/openeuler/CTinspector

Simplified O&M and Development

085openEuler OS Technical White Paper Innovation Projects

eggo
CloudNative SIG

eggo helps automatically deploy large Kubernetes clusters in a flexible and traceable manner within production environments.

Challenges
Kubernetes cluster deployment has always been a challenging task, and the industry has provided several solutions to address
this issue. Despite this, the openEuler CloudNative SIG is not content with the current solutions and has proposed additional
requirements for cluster deployment:
•	 Multiple deployment methods
•	 Online and offline deployment
•	 Heterogeneous nodes
•	 Traceable cluster configuration management

Project Introduction

Features

eggo can run as an independent component to provide cluster deployment and management for individuals or work with
GitOps to manage cluster deployment configurations through a repository. It provides the following functions:
•	 Deployment of Kubernetes clusters based on common Linux distributions, such as openEuler, CentOS, and Ubuntu
•	 Deployment of heterogeneous clusters that contain nodes of different architectures (x86_64 and AArch64)
•	 Kubernetes component deployment using binary files
•	 Online and offline deployment

Configuration
Git repository Meta cluster

Master

Deploy

Ignite

Ignite

Ignite

Monitor

The scheduling of deployment tasks is determined by the network affinity of worker nodes in the target cluster
and meta cluster

Worker 1

Worker 2

Worker 3

Worker N

Image repository

Operator

Deploy

Node 1
Node 2

Node N

Node 1
Node 2

Node N

Node 1
Node 2

Node N

Cluster

Cluster

Server Cloud

Simplified O&M and Development

086 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
eggo can be used to automatically deploy large Kubernetes clusters in production environments and trace cluster lifecycles
and changes.

Repositories
https://gitee.com/openeuler/eggo

Key components:
•	 Configuration Git repository: Git repository for storing cluster deployment configurations. A cloud cluster can register a

webhook to detect configuration changes in the repository and trigger cluster management operations.
•	 Image repository: repository for container images used by the cluster.
•	 Meta cluster: Kubernetes cluster where the eggo management program is deployed to detect changes in the cluster

configuration repository set by the user, and manage cluster lifecycles.
•	 Operator: custom resource definition (CRD) of the meta cluster, which is responsible for cluster configuration awareness and

lifecycle management of load clusters.
•	 Worker nodes: load nodes of the meta cluster, which execute target cluster deployment tasks and are selected based on

network affinity.
•	 Load cluster: cluster managed by eggo, which runs user services. Users can manage the cluster (for example, delete, create,

or update nodes) through eggo at any time.

https://gitee.com/openeuler/eggo

Simplified O&M and Development

087openEuler OS Technical White Paper Innovation Projects

nvwa
Ops SIG

The nvwa kernel live upgrade function upgrades the kernel and fixes kernel vulnerabilities without interrupting services,
ensuring stable system operation.

Challenges
The increasing complexity of the Linux kernel leads to the discovery of new CVEs, of which 60% can only be fixed by kernel
upgrades rather than hot patches, posing following challenges in fixing kernel vulnerabilities:
•	 In most service scenarios, system restart is not allowed because service continuity must be ensured.
•	 The time and storage costs of service migration are unacceptable.
•	 A large number of services cannot be migrated.

Application Scenarios
nvwa supports the x86 and AArch64 architectures and can be directly used on VMs that run common services such as MySQL,
Redis, and Nginx. On physical servers, the framework can be adapted for specific drivers if necessary.

Repositories
https://gitee.com/openeuler/nvwa

•	 Hardware status retention: During the kernel upgrade, hardware and BIOS are not operated to ensure their status remains
unchanged, while direct memory access (DMA) is allowed.

•	 Kernel module status retention: The module_suspend and module_resume interfaces are provided to save the status of
necessary drivers for restoration after the kernel upgrade.

•	 Memory pinning: Memory used by user-mode processes and kernel modules can be frozen until the kernel upgrade is complete.

Project Introduction
nvwa provides a simple nvwa update command
to perform kernel live upgrades.

nvwa uses Checkpoint/Restore In Userspace
(CRIU) to ensure service continuity, kexec as well
as some enhanced technologies to switch kernels,
and driver and kernel status saving mechanisms
to resume services after the system is recovered.
nvwa's key technologies are as follows:
•	 Freezing and restoration of processes and VMs:

CRIU and QEMU are improved to freeze the
complete status of a process or VM in memory.
After the kernel is upgraded, the process or VM
is restored seamlessly in the user space.

•	 Fast kernel reboot: kexec is optimized so that
the kernel can be rebooted within 500 ms.

Applications/
VMs

Kernel

Hardware and BIOS

Drivers

System
services

Freeze service
processes/

VMs

Save the
status of

certain drivers

CRIU/QEMU modrestore

APP/VM

Kernel

Hardware and BIOS

Drivers

System
services APP/VM

Kernel

Hardware and BIOS

kexec Switch to the
new kernel

Drivers

System
services

APP/VM

Kernel

Hardware and BIOS

Drivers

System
services

Kernel live upgrade

Restore the
status of

service processes/
VMs, and drivers

Rollback upon failure: switch to the original kernel and restore process status

CRIU/QEMU, kexec, and modrestore

CRIU/QEMU
and

modrestore

Applications/
VMs

Kernel

Hardware and BIOS

Drivers

System
services APP/VM

Kernel

Hardware and BIOS

System
services

Original status

Freezed status

Reloaded components

Saved drivers

Drivers

Server Cloud Edge Embedded

https://gitee.com/openeuler/nvwa

Simplified O&M and Development

088 openEuler OS Technical White Paper Innovation Projects

PilotGo
Ops SIG

The PilotGo O&M management platform is a plugin-based O&M management tool developed by the openEuler community,
providing full-lifecycle management capabilities for server clusters and function expansion based on plugins. PilotGo aims to
bridge the gap between different O&M tools to build a complete automatic O&M management process.

Challenges
O&M technologies are used in a wide range of service scenarios, including security, log collection, metric monitoring, fault
locating, performance optimization, configuration management, and process automation. Each service O&M scenario may
have its own O&M platform, which provides complete but complex functions that require high learning costs. In addition,
service scenarios are typically distinct from one another, which requires different O&M tools in a cross-scenario process,
complicating the effective implementation of full-process automation. Moreover, O&M platforms may differ in their functions
and not provide convenient APIs or CLI interfaces that can be effectively encapsulated, thus streamlining different O&M tools is
quite challenging.

Project Introduction

Features

PilotGo is a plugin-based O&M management platform, which only provides basic functions. Functions specific to service
scenarios are provided by platform plugins.

Core Functions

The core functions of PilotGo support the basic capabilities of the platform and provide related services for the plugin system,
mainly including:
•	 User management: manages user information.
•	 Host management: manages host clusters.
•	 Permission management: manages permissions.
•	 Audit logs: provides the audit function.
•	 Batch management: manages batch tasks.
•	 Configuration management: manages system and software configurations.
•	 Remote command execution: provides the remote control function.
•	 Plugin management: manages plugins and plugin extensions.

Most core functions are exposed as interfaces for plugins to implement various service logics. In addition, PilotGo provides a
global event notification mechanism to improve the awareness ability of the entire cluster.

Extended Functions

The PilotGo O&M management platform extends functions through plugins to implement common O&M operations. PilotGo
supports the following extension plugins:
•	 Prometheus: collects and displays monitoring metrics and generates alarms.
•	 Grafana plugin: visualizes metrics.
•	 gala plugin: supports the functions of the gala intelligent O&M software, such as advanced metric collection and display,

fault diagnosis, and platform topology.

Server

Simplified O&M and Development

089openEuler OS Technical White Paper Innovation Projects

Application Scenarios
PilotGo can be used to monitor and manage OSs and application running environments on bare metal servers, VMs, and
containers, to provide cluster monitoring and O&M capabilities in typical application scenarios, such as container, MySQL,
and Nginx.

Repositories
Project repository: https://gitee.com/openeuler/PilotGo

Plugin repository: https://gitee.com/openeuler/PilotGo-plugins

The function interfaces of PilotGo can also be exposed for different service plugins to streamline cooperation, enhancing
automation of the entire platform.

Architecture

PilotGo consists of the following independent components:
•	 PilotGo server: core logical component of the PilotGo platform
•	 PilotGo UI: provides the frontend framework of the microservice architecture to extend the plugin UI.
•	 PilotGo agent: provides the remote control capability.
•	 Plugin server: provides the service expansion capability.
•	 Plugin UI: provides UIs related to plugin functions and is embedded in the PilotGo UI.
•	 Plugin agent (optional): works with the plugin server to implement the service expansion capability.

Generally, the PilotGo server and plugin server are deployed on separate servers and communicate with each other through
network protocols. The PilotGo agent and plugin agent are deployed on service hosts and communicate with only their
corresponding servers.

UI Plugin UI

Platform management

Plugin serverPilotGo server
Open APIs

Remote controlRemote control

Host

PilotGo agent Plugin agentPilotGo agent Plugin agent

https://gitee.com/openeuler/PilotGo
https://gitee.com/openeuler/PilotGo-plugins

Simplified O&M and Development

090 openEuler OS Technical White Paper Innovation Projects

SysCare
Ops SIG

SysCare is an OS O&M tool that resolves faults during system operations and provides hot patching services for Linux OSs.

Challenges
A long-standing problem in Linux is the lack of quick and reliable solution to fix vulnerabilities and faults without affecting
services.

Hot patches are typically used to solve such problems, which allows users to repair components failures online by directly
changing the code, all without affecting services. However, hot patches are hard to create and manage, especially to match the
specific code. Further, there is no simple and unified patch mechanism for the diverse file formats, programming languages,
compilation methods, and running modes.

Even using hot patches to repair requires software upgrade to ensure direct use of the software upon service or system restart.
In general, software upgrades and hot patching are the two methods to fix vulnerabilities, but due to certain limitations, hot
patching can only address 40% of the issues. The remaining 60% of issues can only be resolved by live migration and cold
upgrades. However, cold upgrade will lead to slow system restart, resulting in service interruptions. Therefore, Linux requires a
fast and secure system restart method.

Project Introduction
SysCare offers a comprehensive solution for hot services. It provides unified hot patching and fast reboot capabilities, including
hot patching for applications (C/C++ applications like QEMU, Redis, MySQL), dynamic libraries (glibc, OpenSSL, Protobuf), and
kernels. It also integrates kernel hot upgrade capability (nvwa). See figure below.

SysCare

Apps

upatch

glibc OpenSSLkpatch

Libs

Kernels

QEMU Redis MySQL ...

nvwa Fast reboot Modules

glibc OpenSSL Protobuf

...

...

Server Cloud Edge Embedded

Simplified O&M and Development

091openEuler OS Technical White Paper Innovation Projects

Application Scenarios
SysCare can be used in kernel, dynamic library, and user mode scenarios that require hot patches to fix bugs and CVEs, or to
support software upgrades and system restarts.

Repositories
https://gitee.com/openeuler/syscare

SysCare provides the following key functions:

User-mode hot patching

There are many mainstream options for kernel hot patching solutions such as kpatch and livepatch. SysCare integrates
common hot patching capabilities of openEuler with new features to meet demands of user-mode file formats, programming
languages, compilation, and running modes.
•	 Compares the .o object files generated before and after code modifications, then extracts the differences to generate hot

patch files.
•	 Injects code into compilers such as GCC by using uprobe to track the entire compilation process and obtain the essential

information and .o object files required for creating hot patches.
•	 Binds the hot patches to the ELF files by using uprobe, in which patches are triggered by uprobe after the ELF file runs,

eliminating the need for process monitoring. This enables the patches to take effect after patching or when a new process
runs, and also supports hot patching for dynamic libraries.

Patch management

To simplify the complexity associated with typical hot patch management solutions, SysCare shields the differences between
kernel and user-mode hot patches. For example, you can run the syscare build command to build a hot patch for a specified
component. In addition, SysCare provides patch management commands such as apply, active, deactive, remove, status,
info, and list for applying, activating, deactivating, and removing patches, and can also query the status, information, and lists
of patches.

Fast reboot

It uses quick kexec and CPU park technologies to significantly improve system reboot speeds. Moreover, it integrates with the
systemd reboot process to ensure secure termination of service and swift recovery.

https://gitee.com/openeuler/syscare

Infrastructure

092 openEuler OS Technical White Paper Innovation Projects

Developer
Support

Infrastructure

093openEuler OS Technical White Paper Innovation Projects

Compass-CI
CICD SIG

Compass-CI is an open source software platform that supports continuous integration. It provides developers with test, login,
assisted fault demarcation, and historical data analysis for upstream open source software (GitHub, Gitee, GitLab, and other
host platforms). Compass-CI performs automated testing, including build testing and use case testing, based on PRs to build
an open and complete task execution system.

Challenges
The increasing complexity of Linux poses a significant challenge for open source developers due to the limited resources.
With the numerous Linux distributions available, developers are looking at ways to quickly introduce, test, and verify the open
source software.

Facing diverse application scenarios, limited resources can lead to numerous problems during subsequent use, which require
further modifications. Reproducing these issues is challenging, resulting in considerable costs for preparing the environment
and making rapid issue localization impractical.

Project Introduction
Compass-CI is a full-stack testing platform that integrates build and test systems with login debugging, test analysis, and error
locating services. It actively tests thousands of open source software projects to expose issues related to chips and OSs and
automatically locates faults in real-time. Feedback is then sent to software developers, who can perform troubleshooting
to ensure software quality. Compass-CI provides an excellent development experience for community developers, and
contributes to a thriving open source software ecosystem.

Access
layer

Service
layer Debugging task Testing task Result analysis Assisted

demarcation
Repo

registration RESTful

Mail

Data

management

service

Support
layer

Data
layer

Resource
layer

Task database Device database Test result database

Scheduling DeploymentTask queue BuildData
processing Test

Physical machine VM Server Repo Dependent repo

SSH Gitee/GitHub/GitLab/... Web portals

Server Cloud Edge Embedded

Infrastructure

094 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
Software repository testing & verification: When code, test cases, and tools are submitted on the host platform, Compass-CI
automatically retrieves the submitted code for build testing. It also performs automated testing of test cases written in open
source software packages and provides feedback on the test results.

On-demand debugging: If a bug is identified during the testing process, on-demand debugging of environment resources is
available.

Data analysis and comparison: Compass-CI can be used to monitor system running information (CPU, memory, I/O, network,
etc.) and capture snapshots for archiving. It analyzes and compares snapshot data between multiple tests, to assist developers
in identifying factors that influence the outcomes from the test results.

Assisted demarcation: If a bug is discovered, the regression mechanism is automatically triggered to identify the initial commit
information that introduced the problem.

Repositories
https://gitee.com/openeuler/compass-ci/blob/master/README.en.md

https://gitee.com/compass-ci/lkp-tests

•	 Testing services: To support local device development, Compass-CI automatically retrieves the code submitted to GitHub for
testing and provides feedback on the test results.

•	 Debugging environment: Supports logging in to the debugging environment via SSH if issues are detected during testing.
•	 Test result analysis: Analyzes historical test results and provides web and CLI for developers, helping users identify factors

that affect the outcomes.
•	 Assisted locating: Automatically identifies error messages and triggers tests based on Git tree, pinpointing the changes that

introduced the problematic modules.

https://gitee.com/compass-ci/lkp-tests

Infrastructure

095openEuler OS Technical White Paper Innovation Projects

CVE Manager
Infrastructure SIG | Security Committee

Vulnerability management integrates processes, tools, and mechanisms of the openEuler community to detect, collect,
handle, and disclose security vulnerabilities.

Challenges
There is a demand for timely and effective detection, handling, and disclosure of vulnerabilities of community software
packages and distributions, which can directly affect the system security of downstream OSVs and users.

The objectives are as follows:
•	 Timely detection
•	 	Efficient analysis
•	 	Rapid repair
•	 	Controlled disclosure

Project Introduction
The openEuler community attaches great importance to the community version security. The openEuler Security Committee
(SC) will investigate, analyze, resolve, and disclose security vulnerabilities related to the community. Researchers and industry
organizations are encouraged to report the potential vulnerabilities to the SC.

The vulnerability response process is available across the openEuler LTS and its branch versions. See the following flowchart.

Vulnerability Handling Process
Disclosure scope

SC

Vulnerability status

SC, SIG maintainers SC, SIGs

Report Confirm Fix
Restricted
disclosure

Public
disclosure

Downstream
vendors

Public

Reception

Assess
vulnerabilities

Patch
development Patch test

Restricted
disclosure

Release patch

Release SA
Describe

vulnerability
impact

Apply for
CVE Obtain CVE

The openEuler SC encourages users to report the potential vulnerabilities of openEuler distributions to the openEuler
community. Vulnerabilities can be sent to the email of the openEuler SC at openEuler-security@openEuler.org. The SC team
will respond within 48 hours and provide updates of the handling progress.

Server Cloud Edge Embedded

Infrastructure

096 openEuler OS Technical White Paper Innovation Projects

Application Scenarios
•	 Public vulnerabilities of openEuler LTS releases
•	 Zero-day vulnerabilities of openEuler LTS releases

Repositories
https://www.openeuler.org/en/security/vulnerability-reporting/

https://gitee.com/openeuler/security-committee/blob/master/security-process-en.md

https://gitee.com/openeuler/cve-manager

Version build
and release

Create a
CVE issue

Close the
CVE issue

Analyze
and repair
the CVE

Submit a PR and
incorporate

the modification

Collaborative
Vulnerability
Awareness System

CVE-
Manager

Software package
and version
information

Software packages
and CPE mapping

Basic data

Vulnerability
DB

Filter

Automatically
generate the

SA and CVRF

SC review Release the
SA and CVRF

CVE-Manager
filter

Gitee

The openEuler community obtains public vulnerability information from the collaborative vulnerability awareness system
through the CVE-Manager project, and then creates and maintains records in the software package repository of the
corresponding project on Gitee. After the vulnerability is fixed, the general version is built and released with security bulletins.

openEuler uses CVSS v3 to assess vulnerabilities.

For security purposes, the openEuler community will not disclose, discuss, or confirm the security issues of an openEuler
distribution until the vulnerability is investigated and resolved and the security bulletin is issued. A security bulletin includes
technical details, CVE identifier, CVSS security score, severity level of the vulnerability, and the affected and fixed versions. You
can subscribe to security bulletins via email. The community also provides security bulletins in the CVRF format.

https://www.openeuler.org/en/security/vulnerability-reporting/
https://gitee.com/openeuler/security-committee/blob/master/security-process-en.md
https://gitee.com/openeuler/cve-manager

Infrastructure

097openEuler OS Technical White Paper Innovation Projects

EUR

The openEuler User Repo (EUR) is a personal software package hosting platform used to upload the third-party packages that
have not been introduced to the community or variants of community software packages. Once they are built on EUR, these
packages can be conveniently distributed to other users.

Challenges
The openEuler community lacks a robust build-test-distribute platform for third-party packages, covering those still in
development, community variant packages, and long-tail packages. For developers who expect the latest Nginx version for the
20.03 LTS release, or adapt their software to community releases, the current community complicates this process.

Project Introduction
The EUR platform enables developers to use SPEC files and source code of various formats to create software packages that
are compatible with any openEuler versions. The software packages are automatically signed and a software repository is
generated. Developers can access SPEC files via Git/SVN or package software packages from PyPI and RubyGems, and convert
them into RPM packages.

Application Scenarios
•	 Community users with third-party long-tail packages, such as software packages that are no longer available in the community
•	 Community users with third-party variant packages, such as the latest GCC, Nginx, and GNOME components for earlier

versions
•	 Upstream communities with new third-party software packages, such as Firefox and Chrome Nightly

Repositories
https://github.com/opensourceways/copr_docker/

https://github.com/opensourceways/copr_docker/

Infrastructure

098 openEuler OS Technical White Paper Innovation Projects

oepkgs

The open external packages service (oepkgs) provides over 30,000 software packages (source code, binary) compatible for the
openEuler ecosystem. It provides one-stop software package compatibility, file query, and download, as well as open source
software package risk detection services for developers, OSVs, and enterprises who are porting from CentOS and Fedora to
openEuler.

Challenges
•	 Accurate and fuzzy retrieval of files and software packages
•	 Access control for software packages in CI/CD, metadata dependency analysis and management, and flexible verification of

software packages
•	 Risk awareness, security, and compliance analysis of open source software

Project Introduction
oepkgs is a collaborative project developed by the Institute of Software at the Chinese Academy of Sciences, the Nanjing
Institute of Software Technology, and the openEuler community. To ensure the quality of software repositories and continuous
evolution, its extensive packages and mature CI/CD system support source tracing analysis, source code building, binary
scanning, basic function verification, vulnerability and compliance risk awareness, and patch and version update. Further, it
has excellent capabilities such as RPM software package retrieval, metadata analysis, SBOM and supply chain analysis, and
security and compliance risk analysis, providing one-stop access to files, software package queries, risk awareness queries,
and download services for incredible UX.

oepkgs - openEuler Extension Repo

Reliable source

Quality Assurance

Follows up open source OS
communities or introduces hot (trending)
open source software packages to
enrich the openEuler extension repo.

Basic verification
Tests the compatibility
and availability of
binary packages to
ensure that they are
compatible with
openEuler.

Risk
identification
Security evaluation
of target packages
is the most
important part of
quality assurance,
requiring stringent
control of risk
factors for users
and the openEuler
ecosystem
development.

Reliability
assessment
Analyzes the open
source software
supply chain to
evaluate its
reliability and future
evolution. The openEuler

official repo has
more stringent

lifecycle
requirements.

Approval
openEuler
extension repo

vs

official repo

Infrastructure

099openEuler OS Technical White Paper Innovation Projects

Application Scenarios
•	 Introduce software packages to convert upstream projects into RPM packages
•	 Introduce multi-version software packages for porting, to replace conventional Linux OSs
•	 Query compatibility of and locate software packages on openEuler
•	 Allow enterprise users to detect open source software risks on a unified platform
•	 Provide closed-source software distribution channels to enterprise users for direct downloads of software

User Guide
https://docs.openeuler.org/en/docs/22.03_LTS_SP2/docs/oepkgs/overview.html

Repositories
https://search.oepkgs.net/en-US

https://gitee.com/src-oepkgs

https://docs.openeuler.org/en/docs/22.03_LTS_SP2/docs/oepkgs/overview.html
https://search.oepkgs.net/en-US
https://gitee.com/src-oepkgs

Infrastructure

100 openEuler OS Technical White Paper Innovation Projects

openEuler Software Package Contribution Platform

The software package contribution platform is a unified environment for global contributors to contribute software packages
to the openEuler community. The platform streamlines the software package contribution pipeline, covering the application,
test, approval, and release processes, with full transparency. What's more, the platform supports the release of software
package code to Gitee or GitHub, from which contributors all over the world can use in their own environments, feeding into
future development and ensuring more software packages will continue to be contributed to the openEuler community.

Challenges
Software packages of the openEuler community are classified into core, extended, and third-party packages. The current
workflow to submit software packages is as follows: submitting a PR in the openEuler/community repository, and once the
software repository is created, submitting the code of the software package, which after a period of time will be incorporated
to the repository. However, the entire process is performed synchronously and can be time-consuming. In addition,
contributions can only be made in Gitee, posing restrictions on users outside China.

Application Scenarios
A unified platform for developers to contribute software packages to the community.

Repositories
https://software-pkg.openeuler.org/en/package

Project Introduction
This project optimizes the current contribution process for openEuler software packages, streamlining operations for
contributors. The following figure shows the optimized contribution process. The test and approval processes are moved
forward. After the approval is complete, the subsequent repository creation and code submission will be completed
automatically, which changes the workflow from synchronous to asynchronous.

Applicant TC Software Package
Contribution Service

Sign CLA

Submit the contribution application
The application must contain the publicly
accessible spec and src-rpm file paths.

Review
Review the application content.Modify based on the review comments

and test results.
Re-run the test.

Test the software package.
Send the test result to the
application form.

Approval
Agree: Wait until the test is passed.

Refuse: Any time.

Create a software package
code repository.
Set CI for the repository.
Upload spec and src-rpm to
the code repository.

https://software-pkg.openeuler.org/en/package

Infrastructure

101openEuler OS Technical White Paper Innovation Projects

Signatrust

openEuler Signatrust is a reliable signature service developed by the community infrastructure SIG. It supports key
management for OpenPGP and X.509 systems and can seamlessly integrate with various software package forms, including
EFI, RPM, KO, and ISO. It enables the signing process for countless software packages, boosting efficiency and enhancing
community key management.

Challenges
The existing RPM signature tool experiences a bottleneck when processing a large number of signatures, hindering build
efficiency. In addition, the local storage running on pgp-agent has issues with key leakage and poor management usability. As the
community grows, there is an increasing need for file signatures, such as for kernel module, EFI, and images. Now, services must
support multiple systems and file formats with secure key storage, while ensuring excellent signing and management efficiency.

Project Introduction
Before data is stored, Signatrust encrypts key pairs using systems such as KMS and supports file signature in the TEE or
memory. It runs on an asynchronous framework, which enables high-concurrency of signature signing processes. In addition,
an independent UI is introduced to facilitate key management.

Application Scenarios
•	 OpenPGP key pair management in the community versions, to sign files such as RPM/SRPM, ISO, and RepoData
•	 	X.509 key pair management in the community versions, to sign kernel module and EFI files
•	 	Community developers who want to generate their own personal OpenPGP key pairs in EUR, and sign and verify signatures

of RPM packages using their personal key pairs

Repositories
https://gitee.com/openeuler/signatrust

https://gitee.com/openeuler/signatrust

Developer Tool

102 openEuler OS Technical White Paper Innovation Projects

EulerLauncher

EulerLauncher is a developer tool kit developed by openEuler's technical operation and infrastructure teams that integrates
virtualization technologies, such as LXD, Hyper-V, and virtualization framework, of mainstream desktops. It provides
development resources such as VMs and container images for unified provisioning and management, delivering a consistent
experience across Windows, macOS, and Linux. It simplifies the building of openEuler development environment on
mainstream desktops.

Challenges
Mainstream desktops must ensure convenient and stable resources, such as VMs and containers, to deliver an excellent
experience, especially for individuals and university students who have limited development resources. Common VM
management platforms have many limitations. For example, a large amount of software needs to be paid. Other issues include
VirtualBox, which requires you to download a large ISO image and install an OS, WSL that doesn't provide the openEuler
kernel, or other VM management software that typically do not support Apple silicon chips.

Project Introduction

Features

EulerLauncher supports the x86_64 and AArch64 hardware architectures, including Apple silicon chips. It also supports
virtual hardware acceleration capabilities for different platforms and provides high-performance development resources.
EulerLauncher allows users to use community VMs, daily build images, and other custom images to meet development
requirements. Container images will be supported soon.

Application Scenarios
•	 Build openEuler development environment for Windows, macOS, or Linux desktops.
•	 Obtain openEuler development tools and simplify the process for submitting dependency configurations.

Repositories
https://gitee.com/openeuler/eulerlauncher

https://gitee.com/openeuler/eulerlauncher

Developer Tool

103openEuler OS Technical White Paper Innovation Projects

EulerTest
QA SIG

The EulerTest management platform carries E2E testing services in the openEuler community. It provides a web-based data
middle-end to streamline and make version tests traceable, and provides plugins and automated test services to connect to
multiple test engines.

Challenges
The current open source test framework uses automated scripts for version integration tests, however it is largely underused,
with a low number of test cases performed in the community.

Because there is no unified infrastructure to manage all test activities, assets, or processes, each community team must
perform testing using their own means, impacting the reliability of version test results. Furthermore, the community lacks a
test hub that can integrate related engineering capabilities for unified scheduling.

Project Introduction

Features
•	 Static resource management for physical machines, including changing resource keys, releasing occupied resources, and

reinstalling the system.
•	 Dynamic resource management for VMs, providing dynamic configuration of NICs and drives, and a web console.
•	 Text case management and review and version baseline formulation.
•	 Delivers trusted tests through product and milestone management, synchronization with openEuler repositories on Gitee,

and version quality dashboards.
•	 Test task management, automated testing, and tracable manual operations; logs can be split, analyzed, and marked by test

procedure.
•	 Automatic reading of test results from platforms such as openQA and Compass-CI, and generating template-based version

test reports.

Server Cloud Edge Embedded

Developer Tool

104 openEuler OS Technical White Paper Innovation Projects

Application Scenarios

Developer tests

The community test environment, including images, VMs, and containers, is managed on a unified platform, where test
services are made available to connect partners' environments with the community environment. This allows for concurrent
test scheduling and execution, as well as customized, self-service tasks.

Version quality monitoring

For official community releases, the quality of multiple processes, such as software builds, AT execution, software change, test
execution, problem closure, and requirement progress, is monitored using IT measures.

Repositories
https://gitee.com/openeuler/radiaTest

openQA

Official
repos Local cases

S
ch

ed
ul

in
g

R
es

ou
rc

e
po

ol
s

D
ep

lo
ym

en
t

E
xe

cu
tio

n

Compass-CIAPI

R
es

ul
t a

na
ly

si
s

an
d

ar
ch

iv
in

g

D
ep

lo
ym

en
t &

 e
xe

cu
tio

n

Resource pools

worker-x86

S
ch

ed
ul

in
g

Test suite/cases

System
images/repos

Test suite
configuration
(environment)

analysis

CI scheduling Individual use

worker-Arm

CI scheduling Individual use

Registration/Login

1
Login to Gitee

User mgmt

CLA verification
Group permission

verification

Info completion

Group mgmt
(Administrator)

Task mgmt Task execution Task reports

Task creation
(Version/Organization/

Team/Individual)

Task update
(Version/Organization/

Team/Individual)

Case mgmt
(Case writing/Automatic

case binding)

Problem analysis

Task progress
(CI scheduling/Individual use)

Test reports
(CI scheduling/Individual use)

2

Grant
permissions
based on
different
tasks

Unified
mgmt via
the
community
account

https://gitee.com/openeuler/radiaTest

Developer Tool

105openEuler OS Technical White Paper Innovation Projects

pkgship

pkgship is a visualized tool used to query the information and dependency tree of RPM packages of openEuler releases or other
Linux versions. Developed by the openEuler community, it simplifies the analysis process during software package introduction or
upgrade, thereby reducing the time required for analyzing software package dependencies and subsequent O&M.

Challenges
The openEuler OS contains a large number of RPM packages that are connected through complex dependencies. When a
package is added, removed, or upgraded, users must first analyze its impact on other RPM packages and its dependencies. To
date, the dnf/yum command is typically used to query this information, with complex parameters and limited functionality.
Furthermore, the corresponding repo file must be loaded in advance, which significantly hinders the developer experience
and increases maintenance costs.

Project Introduction
pkgship analyzes the repo file or URL of each release to obtain the basic information and dependencies of software packages,
then creates a knowledge map and saves it to Elasticsearch. Basic information includes software package name, version,
description, and license, as well as the one-layer or multi-layer compilation dependency information, and that about
installations. pkgship provides command lines and RESTful interfaces to query data results within 1 second. The repo
configurations can be dynamically expanded, greatly improving analysis efficiency.

Official website: https://pkgmanage.openEuler.org/

Application Scenarios
Query the dependency information of the RPM software packages.

Repositories
https://gitee.com/openeuler/pkgship/blob/master/README.en.md

https://gitee.com/src-openEuler/pkgship

https://gitee.com/openeuler/pkgship/blob/master/README.en.md
https://gitee.com/src-openEuler/pkgship

Developer Tool

106 openEuler OS Technical White Paper Innovation Projects

QuickIssue

QuickIssue is a problem tracking system developed by the openEuler infrastructure team to meet community demand for
faster submission of issues by category.

Project Introduction
QuickIssue offers following advantages:
•	 Provides a unified entry for issue submission on the openEuler official website, allowing developers to easily locate the

corresponding repository.
•	 Provides alternative methods for submitting issues to allow developers that don't have a Gitee account to submit issues.
•	 Provides clear instructions for submitting issues to a repository and a default repository for developers to use.
•	 Streamlines certain operations on openEuler, including query, search, and filtering.
•	 Obtains information from other services, such as SIG management and contribution statistics.

QuickIssue provides three main functions: creating an issue, querying an issue, and querying a PR.

Creating an issue
•	 A unified issue submission process ensures all issues in the openEuler community are submitted through a single entry.
•	 In the event that the issue creator does not have an account of the code hosting platform, they can still submit their issue by

email and a verification code.
•	 An optimized process for issue creators ensures that users can easily locate the repository or submit the issue to the default

repository.

Querying an issue

The QuickIssue service displays all issues in the openEuler community and filters the key information based on search
preferences. If you want to search for issues submitted via email, enter the first half of the email address in the Creator text box.

Querying a PR

QuickIssue has access to all PR information in the openEuler community. Users can simply enter the filters (status, creator, and
labels) and the system will display the relevant results. Furthermore, the system uses cached data, which guarantees a fast
query response speed.

Application Scenarios
A portal for community developers to submit issues and search for community issues and PRs.

Repositories
https://github.com/opensourceways/issue_pr_board/blob/main/README.en.md

https://github.com/opensourceways/issue_pr_board/blob/main/README.en.md

Compatibility and Technical Assessment

107openEuler OS Technical White Paper Innovation Projects

OSV Technical Assessment

The openEuler OSV technical assessment is a standard set up in coordination with the OpenAtom Foundation, to guide
technical assessment on OSVs. Currently, this assessment is being carried out at openEuler Innovation Centers.

Application Scenarios
This standard evaluates the consistency of OSVs' technical roadmap with openEuler, to ensure compatibility with community
releases and reduce repeated porting and adaptation.

Further, it ensures that OSV distributions remain forward compatible during development.

To accelerate OS porting and iteration, differential databases are created and integrated with the x2openEuler porting tool.

Repositories
https://gitee.com/openeuler/oecp

Project Introduction
The OSV technical assessment list displays all OS vendors and versions that have been certified with the community's OSV
basic assessment standard.

The OSV technical assessment is used to verify the consistency of components like the OS kernel versions and configurations,
KABI, software package scope, versions, configurations, services, commands, and files. It ensures the availability of openEuler-
based ecosystem software by checking the degree of reuse of repositories like EPOL/oepkgs and runtime consistency.

https://gitee.com/openeuler/oecp

Compatibility and Technical Assessment

108 openEuler OS Technical White Paper Innovation Projects

openEuler Compatibility List

The openEuler Compatibility List provides a platform for users to query servers and cards.

The openEuler Compatibility List contains information about servers and cards, covering hardware and software.

To guide chip and card vendors to develop independent repository and maintain continuous evolution based on the
community infrastructure, openEuler provides a list of standard specifications, processes, and CI/CD processes for hardware,
covering CPU architectures and vendors, server models and vendors, and component chip models and vendors. openEuler
works with vendors to ensure performance, compatibility, and stability of chips by maintaining their functions, enabling new
versions, and adapting to the ecosystem. Companies such as Marvell, NebulaMatrix, and 3SNIC have built repositories in the
community and regularly operate with versions. For details about related processes, see:

https://www.openeuler.org/en/compatibility/hardware/

We integrate open source software into openEuler and extended communities in accordance with openEuler package
specifications, to meet upstream active industry projects and ensure compatibility with mainstream software. In OS porting
and upgrade scenarios, openEuler provides a unified platform that enables users to quickly introduce and acquire software
packages of corresponding versions. For details, see:

https://www.openeuler.org/en/compatibility/software/

To query the compatibility of open source software, visit https://search.OEPKGS.net/.

For ISVs, openEuler also provides a testing system to test commercial software, covering testing specifications, processes,
solutions, and tool chains. ISVs can conduct testing at the Innovation Centers, with community certificates can be issued for
standard releases. For details about related processes, see:

https://certification.openEuler.org/

Project Introduction

Compatibility and Technical Assessment

109openEuler OS Technical White Paper Innovation Projects

Application Scenarios
The openEuler Compatibility List allows users to search and query compatibility information for CPU architectures and
vendors, server vendors and models, chip models and vendors, and open source and commercial software.

It provides users access to test specifications/schemes, processes, and related tools to ensure releases are compatible with
openEuler standards.

Additionally, IHVs, ISVs, and developers can obtain specific processes for adding software and hardware to the compatibility list.

Repositories
https://gitee.com/openeuler/oec-hardware

https://gitee.com/openeuler/oec-application/blob/master/README.en.md

https://gitee.com/openeuler/technical-certification

https://gitee.com/openeuler/oec-hardware
https://gitee.com/openeuler/oec-application/blob/master/README.en.md
https://gitee.com/openeuler/technical-certification

Compatibility and Technical Assessment

110 openEuler OS Technical White Paper Innovation Projects

openEuler Technical Assessment

The openEuler technical assessment is a specification set up in coordination with the OpenAtom Foundation to assess
commercial software, hardware, and OSVs. Currently, this assessment is carried out at openEuler Innovation Centers.

Project Introduction
The openEuler technical assessment runs on openEuler OS and aims to develop a unified openEuler ecosystem through
unified device assessment tools and detection standards on diversified computing power platforms. For software and
hardware, components are tested against community specifications to confirm compatibility with the openEuler OS, whereas
for OSs, the assessment tests the consistency with the openEuler technical roadmap.

Typical tests for OSs are plagued by low test efficiency, high costs, and the need for repeated testing due to the lack of an
automated platform- and tool-based standard.

The openEuler ecosystem service platform aggregates and streamlines multiple computing resources, and provides a unified
environment for resource management, automatic testing, and automatic generation of test reports. Highlights are as follows:
•	 Unified resource scheduling and E2E automation of environment installation, use case testing, and report generation.
•	 A full-computing hardware resource platform developed with the openEuler Ecosystem Innovation Center that supports

mainstream Kunpeng and x86 architectures, helping slash computing costs for partners in OS porting, adaptation, and
assessment.

•	 Certifications developed with software and server vendors that can certify partners for multiple parties with just one
openEuler test, greatly improving the efficiency of building a software partner ecosystem.

Application Scenarios
The compatibility technical assessment defines a unified testing system that helps users verify and find verified solutions, and
serves as the basis for a thriving OS technical ecosystem.

Repositories
https://gitee.com/openeuler/technical-certification

https://gitee.com/openeuler/technical-certification

Acknowledgment

Every line of code contributed by developers is like a drop of water that merges into the ocean of openEuler
community, which has led to the three-year rapid development of the openEuler community. We extend our

heartfelt gratitude to the following companies that have contributed to the openEuler community:

Huawei Technologies Co., Ltd.
Kylinsoft Co., Ltd.

UnionTech Software Technology Co., Ltd.
Jiangsu HopeRun Software Co., Ltd.

xFusion Digital Technologies Co., Ltd.
Chinasoft International Technology Services Co., Ltd.

Loongson Technology Co., Ltd.
Hunan Kylinsec Technology Co., Ltd.

TurboLinux (Beijing) Co., Ltd.
Institute of Software, Chinese Academy of Sciences

GBA (Guangdong) National Center of Technology Innovation
SUSE

China Unicom
iSoftStone Information Technology (Group) Co., Ltd.

Intel Asia-Pacific Research And Development Ltd.
iSOFT Infrastructure Software Co. Ltd.

Cloud Computing Branch of China Telecom Co., Ltd.
Beijing XSKY Technology Co., Ltd.

School of Cyber Science and Engineering, HUST
Linaro Limited

China Mobile (Suzhou) Software Technology Co., Ltd
Beijing Netswift Technology Co., Ltd.

Shenzhen Epro Software Co., Ltd.
Beijing Huijun Technology Co., Ltd.

QingCloud Technologies Corp
Sangfor Technologies Inc.

CASIC Network Information Development Co., Ltd.
Shaanxi Gongjin Network Technology Co., Ltd.

H3C Technologies Co., Ltd.
Guangxi Yunyang Software Co., Ltd.

Wuxi Advanced Technology Research Institute
Core Technology Co., Ltd.

Wangsu Science & Technology Co., Ltd.
(In no particular order)

Trademark
All trademarks, product, service, and company names mentioned in this document are the property of their respective owners.

Disclaimer
This document may contain predictive information, including but not limited to information about future finance, operations,
product series, and new technologies. There are a number of factors or developments that could cause actual results to differ
materially from those expressed or implied in the forward-looking statements. Therefore, the information in this document is for
reference only and does not constitute any offer or commitment. openEuler is not liable for any behavior that you make based on
this document. openEuler may change the information at any time without notice.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of openEuler.

