
openEuler 22.09 Technical White Paper 2

openEuler 22.09
Technical White Paper

openEuler 22.09 Technical White Paper3

Introduction 02

Platform Architecture 05

Operating Environments 09

Scenario-specific Innovations 11

Kernel Innovations 13

Cloud Base 18

Enhanced Features 21

Copyright 22

Trademarks 22

Appendixes 22

CONTENTS

openEuler 22.09 Technical White Paper 01

Introduction 02

Platform Architecture 05

Operating Environments 09

Scenario-specific Innovations 11

Kernel Innovations 13

Cloud Base 18

Enhanced Features 21

Copyright 22

Trademarks 22

Appendixes 22

01/
Introduction

openEuler 22.09 Technical White Paper02

openEuler has evolved from a simple server operating system (OS) into a digital infrastructure OS that fits into any server, cloud
computing, edge computing, and embedded deployment. It provides a secure, stable, and easy-to-use open source OS that
is compatible with multiple computing architectures. openEuler suits operational technology (OT) applications and enables the
convergence of OT and information and communications technology (ICT).

The openEuler open source community is a portal available to global developers, with the goal of building an open, diversified,
and architecture-inclusive software ecosystem for all digital infrastructure scenarios. It has a rich history of helping enterprises
develop their software, hardware, and applications.

The openEuler open source community was officially established on December 31, 2019, with the original focus of innovating
diversified computing architectures.

On March 30, 2020, the Long Term Support (LTS) version openEuler 20.03 was officially released, which was a new Linux
distribution with independent technology evolution.

Later in 2020, on September 30, the innovative openEuler 20.09 version was released through the collaboration efforts of
multiple companies, teams, and independent developers in the openEuler community. The release of openEuler 20.09 marked a
milestone not only in the growth of the openEuler community, but also in the history of open sourced software in China.

On March 31, 2021, the innovative kernel version openEuler 21.03 was released. This version is enhanced in line with Linux
kernel 5.10 and also incorporates multiple new features, such as live kernel upgrade and tiered memory expansion. These
features improve multi-core performance and deliver the computing power of one thousand cores.

Fast forward to September 30, 2021, openEuler 21.09 was released. This premium version is designed to supercharge all
scenarios, including edge and embedded devices. It enhances server and cloud computing features, and incorporates key
technologies including cloud-native CPU scheduling algorithms for hybrid service deployments and KubeOS for containers.

On March 30, 2022, openEuler 22.03 LTS was released based on Linux kernel 5.10. Designed to meet all server, cloud, edge
computing, and embedded workloads, openEuler 22.03 LTS is an all-scenario digital infrastructure OS that unleashes premium
computing power and resource utilization.

On September 30, 2022, openEuler 22.09 was released, which unleashes diversified computing power for all-scenario
innovations. It further empowers application porting and the interworking between openEuler and OpenHarmony.

As an OS platform, openEuler releases an LTS version every two years. Each LTS version provides enhanced specifications
and a secure, stable, and reliable OS for enterprise users.

openEuler is built on tried-and-tested technologies. A new openEuler innovative version is released every 6 months to quickly
integrate the latest technical achievements of openEuler and other communities. The innovative tech is first verified in the
openEuler open source community as a single open source project, and then these features are added to each new release,
enabling community developers to obtain the source code.

openEuler Version Management

openEuler
OS image

openEuler 20.03 LTS openEuler 22.03 LTS openEuler 22.09 openEuler 23.03

LTS Versions Innovative Versions

openEuler community
mainline versions

Fir
st

inn
ov

at
ive

 ve
rsi

on
In

no
va

tiv
e

ke
rn

el
ve

rsi
on

Cl
ou

d-
na

tiv
e

inn
ov

at
ive

 ve
rsi

on

LTS versions: released every two years, with long
lifecycle management based on innovative versions.
Each LTS version has a relatively stable performance,
reliability, and compatibility.

Innovative versions: released every half a
year between LTS versions. They quickly
integrate the latest technical achievements
of openEuler and other communities.

20.03 20.09 21.03 21.09 22.03 22.09 23.03

openEuler 22.09 Technical White Paper 03

Technical capabilities are first tested in the open source community, and continuously incorporated into each openEuler
release. In addition, each release is built on feedback given by community users to bridge the gap between innovation and the
community, as well as improve existing technologies. openEuler is both a release platform and incubator of new technologies,
working in a symbiotic relationship that drives the evolution of new versions.

Innovative Platform for All Scenarios

openEuler supports multiple processor architectures (x86, Arm, SW64, and RISC-V) and will support other brands (such as
PowerPC) in the future, as part of a focus to continuously improve the ecosystem of diversified computing power.

The openEuler community is home to an increasing number of special interest groups (SIGs), which are dedicated teams that
help extend the OS features from server to cloud computing, edge computing, and embedded scenarios. The openEuler OS
covers all scenarios, and comprises the 22.09 Edge and 22.09 Embedded editions designed for edge computing and embedded
deployments, respectively.

The OS is a perfect choice for ecosystem partners, users, and developers who plan to enhance scenario-specific capabilities.
By creating a unified OS that supports multiple devices, openEuler hopes to enable a single application development for all
scenarios.

Continuous Contribution to the Linux Kernel

As a major contributor to the Linux kernel, the kernel development team is responsible for enhancing the processor architectures,
Advanced Configuration and Power Interface (ACPI), memory management, file systems, media, kernel documents, bug fixes,
and code rebuilds. Over the past decade, openEuler has contributed more than 17,000 patches to the Linux kernel.

In Linux kernels 5.10 and 5.14, openEuler's code contribution ranks No.1 in the world. openEuler is committed to kernel
innovation and has been continuously contributing to upstream communities.

Open and Transparent: The Open Source Software Supply Chain
The process of building an open source OS relies on supply chain aggregation and optimization. To ensure reliable open
source software or a large-scale commercial OS, openEuler comprises a complete lifecycle management that covers building,
verification, and distribution. The brand regularly reviews its software dependencies based on user scenarios, organizes
the upstream community addresses of all the software packages, and verifies its source code by comparing it to that of the
upstream communities. The build, runtime dependencies, and upstream communities of the open source software form a closed
loop, realizing a complete, transparent software supply chain management.

Intel LinaroRed Hat AMD Google Huawei

Contribution to Linux Kernel Patches

2500

2000

1500

1000

500

0
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14

Server
Base public services

EmbeddedServer Cloud computing Edge

openEuler 22.09 Technical White Paper04

02/
Platform Architecture

openEuler 22.09 Technical White Paper 05

System Framework
openEuler is an innovative open source OS platform built on kernel innovations and a solid cloud base to cover all scenarios.
It is built on the latest trends of interconnect buses and storage media, and offers a distributed, real-time acceleration engine
and base services. It provides competitive advantages in edge and embedded scenarios, and is the first step to building an all-
scenario digital infrastructure OS.

openEuler 22.09 runs on Linux kernel 5.10 and provides POSIX APIs and OS releases for server, cloud native, edge, and
embedded environments. It is a solid foundation for intelligent collaboration across hybrid and heterogeneous deployments.
openEuler 22.09 is equipped with a distributed soft bus and KubeEdge+ edge-cloud collaboration framework, among other
premium features, making it a perfect choice for collaboration over digital infrastructure and everything connected models.

In the future, the openEuler open source community will continue to innovate, aiming to promote the ecosystem and consolidate
the digital infrastructure.

Kernel innovations:

•	 Enhanced cloud-native scheduling: openEuler suits hybrid deployments of online and offline cloud services. Its innovative
CPU scheduling algorithm ensures real-time CPU preemption and jitter suppression for online services. Additionally, its
innovative memory reclamation algorithm against out of memory (OOM) allows online services to run reliably based on their
higher service priorities.

•	 EulerFS: A new file system is designed for non-volatile dual in-line memory modules (NVDIMMs). It uses technologies such
as soft updates and dual-view directories to accelerate file metadata synchronization and thus improve file read and write
performance.

•	 Tiered memory expansion etMem: With the user-mode swap function, the discarded cold memory can be changed to the
user-mode storage based on a preset policy. The user-mode swap delivers a higher performance than the kernel-mode swap
and the whole swap process is transparent to users.

•	 Enhanced memory reliability, availability, and serviceability (RAS): The tiered-reliability memory technology (technical
preview feature) preferentially allocates high-reliability memory for sensitive data, such as kernels and key processes. This
technology reduces the system breakdown rate and enhances system reliability.

Cloud base:

•	 KubeOS for containers: In cloud native scenarios, the OS is deployed and maintained in containers, allowing the OS to be
managed based on Kubernetes, just as service containers.

•	 Secure container solution: Compared with the traditional Docker+QEMU solution, the iSulad+shimv2+StratoVirt secure
container solution reduces the memory overhead and boot time by 40%.

•	 Dual-plane deployment tool eggo: OSs can be installed with one click for Arm and x86 hybrid clusters, while deployment of
a 100-node cluster is possible within just 15 minutes.

New scenarios:

•	 Edge computing: openEuler 22.09 Edge is released for edge computing scenarios. It integrates the KubeEdge+ edge-cloud
collaboration framework to provide unified management, provisioning of edge and cloud applications, and other capabilities.

•	 Embedded: openEuler 22.09 Embedded is released for embedded scenarios, helping compress images under 5 MB and
image loading within 5 seconds.

Flourishing community ecosystem:

•	 Desktop environments: UKUI, DDE, Xfce, Kiran-desktop, and GNOME.

•	 openEuler DevKit: Supports OS migration, compatibility assessment, and various development tools such as secPaver
which simplifies security configuration.

openEuler 22.09 Technical White Paper06

Platform Framework
The openEuler open source community partners with upstream and downstream communities to advance the evolution of
openEuler versions.

Hardware Support
The openEuler open source community works with multiple vendors to build a vibrant southbound ecosystem. While related
features will be incorporated in subsequent 22.09 updates, openEuler 22.09 supports Intel Ice Lake and AMD Milan processors
and provides basic support for the next-gen Intel Sapphire Rapids processor.

All openEuler versions support x86, Arm, ShenWei, Loongson, and RISC-V CPU architectures, and Intel, AMD, and Zhaoxin
CPU chips. openEuler can run on servers from multiple hardware vendors and is compatible with NIC, RAID, Fibre Channel,
GPU & AI, DPU, SSD, and security cards.

Global
open source
communities

Processors Industry ISVs Wide Variety
of Community

Partners

OS Vendors

Participating in

Multiple-computing
power vendors

Governments, telecom carriers,
security, finance, and electricity

Other upstream
communities

Upstream first

openEuler Open Source Community

Secondary release
Direct use

Set up
specs

Version
release

Tool
release

SLAO&M platformUser
feedback

Defect tracking platform

Chip ecosystem

Build platform

Code, version and tool management platform

Publish
specs

Community
development

platform

openEuler supports the following CPU architectures:

openEuler supports the following servers:

Hardware Type x86 Arm ShenWei Loongson RISC-V

CPU Intel, AMD,
Zhaoxin, Hygon

Kunpeng,
Phytium ShenWei Loongson Nuclei, StarFive,

UC Techip

Hardware Type x86 Arm ShenWei Loongson

Server

Intel: xFusion, H3C,
Inspur, Lenovo,
Nettrix, SUPERCLOUD,
PowerLeader,
Supermicro, ZTE

AMD: H3C, Lenovo,
Supermicro

Hygon: H3C, Sugon/Suma

Zhaoxin: Zhaoxin

Kunpeng: TaiShan, Tongfang,
H3C, PowerLeader,
Digital China,
Yangtze Computing,
Huanghe, Sichuan
Hongxin, Xiangjiang
Kunpeng, 100 Trust,
Tiangong

Phytium: QS, H3C,
PowerLeader,
Lenovo, Tongfang,
Skysolidiss

ShenWei Loongson

openEuler 22.09 Technical White Paper 07

Hardware
Type x86 Arm

NIC Huawei, Mellanox, Intel, Broadcom, Marvell,
NetSwift

Huawei, Mellanox, Broadcom, Marvell, NetSwift,
Intel

RAID Huawei, Avago, PMC Huawei, Avago, PMC

Fibre
Channel Huawei, Marvell, Qlogic, Emulex Huawei, Marvell, Qlogic, Emulex

GPU&AI Huawei, NVIDIA, AMD, Iluvatar CoreX, Intel Huawei, NVIDIA, AMD, Iluvatar CoreX, Intel

DPU Jaguar Microsystems

SSD Huawei, Samsung, Intel Huawei, Samsung, Intel, Dera

Security Sansec Sansec

openEuler supports the following cards:

For the complete compatibility list, visit: https://www.openeuler.org/en/compatibility/.

openEuler 22.09 Technical White Paper08

03/
Operating

Environments

openEuler 22.09 Technical White Paper 09

Servers
To install openEuler on a physical machine, check that the physical machine meets the compatibility and hardware requirements.
For a full list, visit https://openeuler.org/en/compatibility/.

VMs
openEuler supports the following virtual machines (VMs):
1. centos-7.9 qemu 1.5.3-175.el7 libvirt 4.5.0-36.el7 virt-manager 1.5.0-7.el7
2. centos-8 qemu 2.12.0-65.module_el8.0.0+189+f9babebb.5

libvirt 4.5.0-24.3.model_el8.0.0+189+f9babebb virt-manager 2.0.0-5.el8
3. fedora 32 qemu 4.2.0-7.fc32 libvirt 6.1.0-2.fc32 virt-manager 2.2.1-3.fc32
4. fedora 35 qemu 6.1.0-5.fc35 libvirt 7.6.0-3.fc35 virt-manager 3.2.0-4.fc35

Edge Devices
To install openEuler on an edge device, check that the edge device meets the compatibility and hardware requirements.

Embedded Devices
To install openEuler on an embedded device, check that the embedded device meets the compatibility and minimum hardware
requirements.

Item Configuration Requirement

Architecture AArch64, x86_64

Memory At least 4 GB

Drive At least 20 GB

Item Configuration Requirement

Architecture AArch64, x86_64

Memory At least 4 GB

Drive At least 20 GB

Item Configuration Requirement

Architecture AArch64, AArch32

Memory At least 512 MB

Drive At least 256 MB

Item Configuration Requirement

Architecture AArch64, x86_64

CPU 2 CPUs

Memory At least 4 GB

Drive At least 20 GB

openEuler 22.09 Technical White Paper10

04/
Scenario-specific

Innovations

openEuler 22.09 Technical White Paper 11

openEuler 22.09 includes the Edge edition for edge computing and the Embedded edition for embedded systems. The OS
empowers all-scenario collaboration over the new generation of digital infrastructure.

Embedded
openEuler 22.09 Embedded offers a distributed soft bus and software package build capabilities to allow for mixed criticality
deployment of real-time and non-real-time planes. Based on the participation of ecosystem partners, users, and developers of
the openEuler open source community, openEuler 22.09 Embedded helps to design efficient embedded OS solutions. It will
attain greater support for chip architectures such as PowerPC and RISC-V, and add capabilities such as deterministic latency,
industrial middleware, and simulation systems.

Feature Description

openEuler 22.09 provides the following features for embedded scenarios:

•	 Lightweight deployment: The open source Yocto is a small-scale and lightweight framework that allows you to customize
OS images. It can compress OS images to under 5 MB and shorten OS startup time to under 5s.

•	 Support for diverse hardware types: Among others, Raspberry Pi is a new device that can serve as the universal hardware
for embedded deployments.

•	 Soft real-time kernel: This capability is inherited from Linux kernel 5.10, and helps respond to soft real-time interrupts within
microseconds.

•	 Mixed criticality deployment: Real-time (Zephyr) and non-real-time planes can coexist on an SOC based on Raspberry Pi
(new support in openEuler 22.09). The lifecycle management of real-time systems is also supported.

•	 Distributed soft bus (DSoftBus): The DSoftBus and HiChain point-to-point authentication module available in
OpenHarmony are used to implement interconnection and interworking between embedded devices running on openEuler as
well as between openEuler embedded devices and OpenHarmony devices (new support in openEuler 22.09).

•	 Embedded software packages: Over 80 common embedded software packages can be built using openEuler.

•	 Hard real-time kernel (new support in openEuler 22.09): The open source Real Time Operating System (RTOS) kernel,
UniProton, controls the context switchover latency down to 2 μs and the interrupt latency to 1 μs.

The following features will be available soon:

•	 Unified APIs: The hard real-time kernel supports POSIX APIs to simplify application development.

•	 Industry security certifications: openEuler 22.09 is currently under review for different standards and certifications,
including IEC61508 and EC62443.

Application Scenarios

Embedded systems help supercharge computing performance in a wide range of industries and fields, including aerospace,
industrial control, telecommunications, automobiles, and healthcare. Mature 5G and AI technologies will enable embedded
systems to meet the demands for intelligent management of IoT and edge computing devices.

Compiler

Build

Emulation

Mixed criticality system

Embedded hardware

Linux soft real-time

QEMU Raspberry Pi Others

Real-time and non-real-time kernels

Embedded Microvisor

IDE
Soft bus

Device cabling, connection,
and communication

Lightweight
Quick startup,
low OS noise

Secure
Security configuration

specification

Unified runtime

Containers

openEuler 22.09 Technical White Paper12

05/
Kernel Innovations

openEuler 22.09 Technical White Paper 13

What's New in the openEuler Kernel
openEuler 22.09 runs on Linux kernel 5.10 and inherits the competitive advantages of community versions and innovative
features released in the openEuler community.

•	 BPF CO-RE (Compile Once-Run Everywhere): Solves portability issues of BPF. After being compiled and passing kernel
verification, the compiled program can run on kernels of different versions without recompilation.

•	 Memory RAS – reliable memory: The kernel, key processes, memory file system, and file cache use reliable memory to
prevent kernel reset caused by multi-bit errors (MBEs). Compared with openEuler 22.03 LTS, the support for reliable memory
is more complete and extensive.

•	 Memory RAS – enhanced UCE tolerance: In the event the copy_from_user experiences a multi-bit error (MBE), the
affected processes can be killed to avoid kernel reset.

•	 Kernel-programmable scheduling framework: Preemption, core selection, task execution, and code examples.

•	 BPF-based kernel cache: Greatly improves Redis performance.

•	 Support for AArch64 scalable matrix extension (SME): The next-generation SIMD is equipped, with more powerful
functions than Arm's Neon, providing better HPC and machine learning performance for AArch64 platforms.

•	 Rust for Linux driver framework: Provides Rust-related infrastructure and facilitates Linux driver compiling.

•	 Huge-page programs: Reduces TLB misses and improves application performance.

•	 ShangMi (SM) cryptographic algorithms: SM3 and SM4.

•	 SM cryptographic algorithms: module signing.

Programmable Kernel
The eBPF-based programmable scheduling framework enables the kernel scheduler to extend scheduling policies and better
meet varying loads. It has the following features:

•	 Tag management mechanism: The capability of tagging tasks and task groups is open. Users and kernel subsystems can
tag specific workloads by calling interfaces. The scheduler can detect tasks of specific workloads by tag.

•	 Policy extension: The programmable scheduling framework supports policy extension for completely fair scheduling (CFS)
preemption, core selection, and task execution, and adds new extension points and various auxiliary methods to extend
policies.

Feature Description

hook export

Programmable user policies

Programmable kernel framework
event/map syscall/map

Policy A Policy B Policy C …

Base policy library (.lib)

Tag management (tasks/processes/groups/users)

Programmable base library (tools)

Core selection

topo_helper

Task execution

Scheduling

load_helper

Load balancing

tag_helper

...

...M
em

or
y

N
et

w
or

k

Fi
le

 s
ys

te
m

openEuler 22.09 Technical White Paper14

•	 Base library functions and policy library: Provides basic library functions and custom scheduling policy templates for quick
orchestration and extension of user-mode policies.

•	 Tag management mechanism: Supports user-defined extended tags for objects such as tasks, processes, groups, and
users, and bears the semantics of collaborative scheduling between user-mode and kernel-mode components.

•	 Scheduling component hook point and helper function: Supports custom policy injections for CFS core selection, task
execution, and preemption processes.

Application Scenarios

On the programmable kernel framework, developers and system administrators can create policies and dynamically load those
policies to the kernel for execution.

WasmEngine
Framework as a Service (FaaS) is a new computing paradigm of cloud computing. It features agile development, auto
scaling, pay-per-use experience, and minimized O&M, helping users build any types of applications and services with ease.
Conventional container-based FaaS decouples custom computing capabilities from content delivery network (CDN) services and
implements fast iteration and updates. However, its cold start speed and memory overhead of containers make it insufficient for
quick execution and processing of tens of thousands of instances on a single node, such as those in high-concurrency, heavy
traffic scenarios.

To solve this, openEuler provides a WasmEngine sandbox solution based on the WebAssembly (WASM) technology to isolate
functions in the WASM sandbox.

Feature Description

The functions of the lightweight WasmEngine are available thanks to the following two key components:

1.	 WASM function management framework

•	 Listens to and processes concurrent function requests.

•	 Manages functions throughout their lifecycle.

•	 Can work on Open Container Initiative (OCI) container images and manage local function image resources.

2.	 WASM lightweight coroutine scheduling framework

Abstracts the execution context of WASM instances, supports lightweight and high-performance user-mode coroutine
scheduling models, and supports multiple WASM instance execution models such as JIT and AOT.

Application Scenarios

Stateless FaaS function tasks that run for a short period of time can be started on demand. For example, in the CDN edge
computing scenario, custom request preprocessing functions allow for on-demand pulls and quick response.

FaaS framework WASM image repository

WasmEngine
WASM function management framework

WASM lightweight coroutine scheduling framework

WASI API

x86 AArch64 DPU

openEuler

Function request monitoring Function lifecycle mgmt. Function image mgmt.

WASM A WASM B WASM C WASM D

openEuler 22.09 Technical White Paper 15

Control-Data Plane Separation on HCK
High-performance computing (HPC) is a core foundation in large-scale clusters, providing concurrent computing and frequent
data synchronization, but it is impacted by system noise, which can cause single-node fluctuations on overall performance and
scalability of the cluster.

To ensure low system noise for HPC services, this design uses the computing base, High-performance Computing Kit (HCK),
to separate the control and data planes and works with the HCK user-mode tool launcher to run applications on isolated CPUs,
providing a low-noise isolated execution environment.

Feature Description

HCK provides the following functions:

1.	 Kernel-mode base

•	 CPU noise migration: Migrates unwanted system noise from isolated cores.

•	 CPU isolation management: Tags and reserves specified CPUs during system startup.

•	 Task domain management: Creates task domains and configures affinity when processes are running on isolated CPUs.

•	 Topology filtering: Controls the availability of CPU topology when some interfaces under proc and sysfs obtain the CPU
topology.

2.	 User-mode tool

The user-mode tool connects to the sysfs interface provided by the preceding kernel-mode functions to run target applications
on specified isolated CPUs.

Most HPC services run on the Bulk Synchronous Parallel (BSP) model featuring parallel computing + communication +
synchronization. As mentioned, system noise has great impact on service performance. System noise refers to non-application
computing tasks executed during service running, including system/user-mode daemon processes, kernel daemon processes,
memory management, system scheduling overheads, non-computing tasks of service applications, other noise (cache misses,
page faults) caused by resource contention, among others. Analysis shows that when system noise is long (length) with a short
noise interval, it has a much greater impact on the HPC application performance, while other issues include long application
synchronization time and large number of execution nodes also affect performance. Large-scale systems like exascale
computing systems will experience great performance deterioration from system noise. Therefore, measures must be taken to
reduce system noise.

Control plane Data plane
Control tasks

Syscall

Reserve & Isolation

CPU DPU IPU NPU

QoS High availability Interrupt routing

Scheduler MM

File system Network

Syscall proxy

openEuler Linux kernel

Hardware

HPC tasks

UI DDS IDE OpenMP MPI

Linux-compatible syscall

Scenario-specific OS (lightweight)

Scenario-specific OS base framework

Noise migration CPU isolation

openEuler 22.09 Technical White Paper16

A control-data plane separation solution uses the OS to isolate HPC tasks from system management. The control-data plane
separation isolates "noisy" computing tasks, alleviates resource contention, and ensures compatibility with the Linux ecosystem.
These are described as follows:

To isolate HPC tasks and those tasks that cause noise, HPC tasks are run on the lightweight kernel, while system tasks,
interrupt processing, and kernel threads are run on the Linux kernel to avoid interference on HPC tasks. The syscall proxy is
used for scheduling. The kernel independently processes high-load system scheduling to ensure high-load tasks are run without
affecting other system services.

Compatibility with the Linux ecosystem enables programs to run on the lightweight kernel without modification.

In short, the control-data plane separation aims to improve compatibility and universality to inherit the powerful Linux ecosystem
(current kernel), and support scenario-specific OS development and operating tasks on the general framework.

Application Scenarios

For environments that call for a low level of system noise, a CPU isolation kernel base with control-data plane separation runs
specific applications on isolated CPUs using a launcher.

openEuler 22.09 Technical White Paper 17

06/
Cloud Base

openEuler 22.09 Technical White Paper18

Enhanced StratoVirt Standard Virtualization
StratoVirt is an enterprise-grade virtualization platform designed for cloud data centers. "Strato" refers to "stratosphere" – the
layer of the Earth's atmosphere immediately above the troposphere – and indicates a light protective layer that protects services
on the openEuler platform.

StratoVirt offers the following protection features:

•	 Robust security: Offers language-level security based on Rust, while the modular design minimizes the attack surface and
physically isolates each tenant.

•	 Lightweight: When running a simplified device model, StratoVirt can start it within 50 ms, and control the memory overhead
within 4 MB.

•	 Software and hardware collaboration: Supports x86 VT and Kunpeng-V virtualization.

•	 Lightning-fast scaling: Scales devices within milliseconds, to provide flexible resource scaling for lightweight workloads.

•	 Multi-scenario support: A single architecture supports multiple scenarios, including serverless, secure containers, and
standard VMs.

New Features

StratoVirt standard virtualization enhances the features in extended desktop VMs, and integrates northbound interfaces and
common standard software and hardware ecosystems.

•	 Positioning: Desktop VMs in key scenarios with standard virtualization support VNC, USB keyboard and mouse, and virtio-
gpu graphics desktop virtualization, expanding the application ecosystem.

•	 Specifications: Compatibility with common standards such as ACPI and UEFI enables VM edk2 boot, NUMA display, and
CPU topology display.

•	 Enhanced performance and abundant devices: Virtio multi-queue and vhost-user-net improve IOPS throughput.

•	 Northbound ecosystem: The StratoVirt driver is available in libvirt, enriching the northbound software ecosystem.

HybridSched for Hybrid Virtualization Scheduling
Low resource utilization of cloud data centers is a common issue in the industry, and has fueled ways to improve this problem,
such as deploying services based on priorities (hybrid deployment). The core technology of hybrid deployment is resource
isolation and control.

HybridSched is a full-stack solution for hybrid deployment of VMs, covering enhanced OpenStack cluster scheduling, the single-
node QoS management component Skylark, and kernel-mode base resource isolation. In particular, Skylark is a QoS-aware
resource scheduler used when high- and low-priority VMs are deployed together, improving physical machine resource utilization
while ensuring the QoS of high-priority VMs.

Feature Description

openEuler HybridSched
OpenStack

Keystone

Nova compute

libvirt priority definition

cgroup/resctrl/proc

Cinder Neutron

Cinder
Glance
Neutron

Nova
Hybrid resource model Priority semantics Global core binding

Skylark

Kernel

Power consumption data collection
Interference

locating
Interference

quantification

QoS analysis QoS control

Anti-hunger and anti-priority-inversion
SMT isolation Hard priority

Multi-type resource allocation mechanism
RDT MPAM

Existing component/mechanism Enhanced component/mechanism

CPU interference isolation CPU/Memory bandwidth interference isolation

Control space search

CPU bandwidth control

openEuler 22.09 Technical White Paper 19

•	 Enhanced cluster scheduling: Enhances OpenStack Nova to support priority-based semantic scheduling.

•	 Power consumption control: Limits the CPU bandwidth of low-priority VMs to reduce the overall system power consumption
and ensure the QoS of high-priority VMs.

•	 Cache and memory bandwidth control: Limits the LLC and memory bandwidth of low-priority VMs. Currently, only static
allocation is supported.

•	 CPU interference control: Supports CPU time slice preemption in microseconds, SMT interference isolation, and anti-
priority-inversion.

Application Scenarios

To improve resource utilization, services are classified into high- and low-priority services based on latency sensitivity, and
deployed accordingly. Latency-sensitive services are recommended for high-priority VMs, such as web services, high-
performance databases, real-time rendering, and machine learning inference; while services not limited by latency can be used
for low-priority VMs, such as video encoding, big data processing, offline rendering, and machine learning training.

openEuler 22.09 Technical White Paper20

07/
Enhanced Features

openEuler 22.09 Technical White Paper 21

Full-Stack Support for SM Cryptographic Algorithms
The openEuler OS now supports ShangMi (SM) cryptographic algorithms (SM2, SM3, and SM4) in key security features, and
provides cryptographic services such as the SM cryptographic algorithm library, certificates, and secure transmission protocols
for upper-layer applications.

Feature Description

SM cryptographic algorithms provide the following features:

•	 User-mode algorithm libraries, such as OpenSSL and Libgcrypt, support SM2, SM3, and SM4.

•	 OpenSSH supports SM2, SM3, and SM4.

•	 OpenSSL supports the Transport Layer Cryptography Protocol (TLCP) stack of the SM standards.

•	 SM3 and SM4 are supported for drive encryption (dm-crypt/cryptsetup).

•	 SM3 is supported for password encryption in user identity authentication (pam/libuser/shadow).

•	 SM3 is supported for data digest in intrusion detection (AIDE).

•	 SM2, SM3, and SM4 are supported in the kernel cryptographic framework (crypto), allowing algorithm performance
optimization using instruction sets such as AVX, CE, and NEON.

•	 The SM3 message digest algorithm and SM2 certificate are supported in Integrity Measurement Architecture and Extended
Verification Module (IMA/EVM) of the kernel.

•	 The SM2 certificate is supported in kernel module signing and module signature verification.

•	 SM4-CBC and SM4-GCM algorithms are supported in Kernel Transport Layer Security (KTLS).

•	 SM3 and SM4 are supported in the Kunpeng Accelerator Engine (KAE).

Application Scenarios

The SM capabilities provided by openEuler safeguard applications running on openEuler. For example, SM3 is used to encrypt
service data based on the OpenSSL encryption API, and SM3 or SM4 is used to encrypt drives in dm-crypt.

x2openEuler Porting Tool
x2openEuler is used to assess the feasibility and compatibility of porting from another OS to openEuler. It identifies compatibility
risks in software, hardware, and configuration items through porting reports, and provides functions such as feasibility
assessment, upgrade execution, and visualized batch porting for in-place upgrade to openEuler.

Feature Description

•	 Software assessment
Scans and assesses dependency packages (.rpm, .tar, .zip, .gzip, .jar, .py, .pyc, .sh, and .bin) for incompatibilities, and
generates a report in HTML format.

•	 Configuration collection and assessment
Collects user environment data and generates JSON files. x2openEuler collects and assesses information about the systemd
service, kernel parameters, and network and drive mounting configurations.

•	 Hardware assessment
Checks whether the system (x86/AArch64) and server boards (RAID/NIC/FC/IB/GPU/SSD/TPM) in the operating environment
are in the openEuler compatibility list.

•	 In-place upgrade
Assesses whether the service software installed in the current environment can be upgraded to the openEuler version and
upgrades the OS and services accordingly, and supports porting management and batch execution on a WebUI.

openEuler 22.09 Technical White Paper22

Appendix 1: Setting Up the Development Environment

 Appendix 2: Security Handling Process and Disclosure

Environment Preparation Address

Downloading and
Installing openEuler https://www.openeuler.org/en/download/

Preparing the
Development Environment https://gitee.com/openeuler/community/blob/master/en/contributors/prepare-environment.md

Building a Software
Package https://gitee.com/openeuler/community/blob/master/en/contributors/package-install.md

Disclosure of Community
Security Issues Address

Security Handling Process https://gitee.com/openeuler/security-committee/blob/master/security-process-en.md

Security Disclosure https://gitee.com/openeuler/security-committee/blob/master/security-disclosure-en.md

10/ Appendixes

Copyright
All materials or contents contained in this document are protected by the copyright law, and all copyrights
are owned by openEuler, except for the content cited by other parties. Without a prior written permission of
the openEuler community or other parties concerned, no person or organization shall reproduce, distribute,
reprint, or publicize any content of this document in any form; link to or transmit the content through hyperlinks;
upload the content to other servers using the "method of images"; store the content in information retrieval
systems; or use the content for any other commercial purposes. For non-commercial and personal use, the
content of the website may be downloaded or printed on condition that the content is not modified and all
rights statements are reserved.

Trademarks
All trademarks and logos used and displayed on this document are all owned by the openEuler community,
except for trademarks, logos, and trade names that are owned by other parties. Without the written permission
of the openEuler community or other parties, any content in this document shall not be deemed as granting
the permission or right to use any of the aforementioned trademarks and logos by implication, no objection,
or other means. Without prior written consent, no one is allowed to use the name, trademark, or logo of the
openEuler community in any form.

08/

09/

openEuler 22.09 Technical White Paper1

