
openEuler 22.03 LTS SP1 Technical White Paper 2

openEuler 22.03 LTS SP1
Technical White Paper

openEuler 22.03 LTS SP1 Technical White Paper3

Introduction 02

Platform Architecture 05

Operating Environments 09

Scenario-specific Innovations 11

Kernel Innovations 13

Cloud Base 16

Enhanced Features 19

Technical Preview 28

Copyright 33

Trademarks 33

Appendixes 33

CONTENTS

openEuler 22.03 LTS SP1 Technical White Paper 01

Introduction 02

Platform Architecture 05

Operating Environments 09

Scenario-specific Innovations 11

Kernel Innovations 13

Cloud Base 16

Enhanced Features 19

Technical Preview 28

Copyright 33

Trademarks 33

Appendixes 33

01/
Introduction

openEuler 22.03 LTS SP1 Technical White Paper02

openEuler has evolved from a simple server operating system (OS) into a digital infrastructure OS that fits into any server, cloud
computing, edge computing, and embedded deployment. It provides a secure, stable, and easy-to-use open source OS that
is compatible with multiple computing architectures. openEuler suits operational technology (OT) applications and enables the
convergence of OT and information and communications technology (ICT).

The openEuler open source community is a portal available to global developers, with the goal of building an open, diversified,
and architecture-inclusive software ecosystem for all digital infrastructure scenarios. It has a rich history of helping enterprises
develop their software, hardware, and applications.

The openEuler open source community was officially established on December 31, 2019, with the original focus of innovating
diversified computing architectures.

On March 30, 2020, the Long Term Support (LTS) version openEuler 20.03 was officially released, which was a new Linux
distribution with independent technology evolution.

Later in 2020, on September 30, the innovative openEuler 20.09 version was released through the collaboration efforts of
multiple companies, teams, and independent developers in the openEuler community. The release of openEuler 20.09 marked a
milestone not only in the growth of the openEuler community, but also in the history of open sourced software in China.

On March 31, 2021, the innovative kernel version openEuler 21.03 was released. This version is enhanced in line with Linux
kernel 5.10 and also incorporates multiple new features, such as live kernel upgrade and tiered memory expansion. These
features improve multi-core performance and deliver the computing power of one thousand cores.

Fast forward to September 30, 2021, openEuler 21.09 was released. This premium version is designed to supercharge all
scenarios, including edge and embedded devices. It enhances server and cloud computing features, and incorporates key
technologies including cloud-native CPU scheduling algorithms for hybrid service deployments and KubeOS for containers.

On March 30, 2022, openEuler 22.03 LTS was released based on Linux kernel 5.10. Designed to meet all server, cloud, edge
computing, and embedded workloads, openEuler 22.03 LTS is an all-scenario digital infrastructure OS that unleashes premium
computing power and resource utilization.

On September 30, 2022, openEuler 22.09 was released to further enhance all-scenario innovations.

On December 30, 2022, openEuler 22.03 LTS SP1 was released, which is designed for hitless porting with best-of-breed tools.

As an OS platform, openEuler releases an LTS version every two years. Each LTS version provides enhanced specifications
and a secure, stable, and reliable OS for enterprise users.

openEuler is built on tried-and-tested technologies. A new openEuler innovative version is released every 6 months to quickly
integrate the latest technical achievements of openEuler and other communities. The innovative tech is first verified in the
openEuler open source community as a single open source project, and then these features are added to each new release,
enabling community developers to obtain the source code.

openEuler Version Management

openEuler 20.03 LTS openEuler 22.03 LTS

LTS Versions
openEuler 22.09 openEuler 23.03

Innovative Versions

openEuler community
mainline versions

Fi
rs

t in
no

va
tiv

e
ve

rs
ion

LT
S

In
no

va
tiv

e
ke

rn
el

ve
rs

ion
Cl

ou
d-

na
tiv

e
inn

ov
at

ive
 ve

rs
ion

Innovative versions: released every half a year between
LTS versions. They quickly integrate the latest technical
achievements of openEuler and other communities.

LTS versions: released every two years, with long
lifecycle management based on innovative versions.
Each LTS version has a relatively stable performance,
reliability, and compatibility.

20.03 20.09 21.03 21.09 22.03 22.09 23.03

SP3

SP2

SP1 LT
S

SP3

SP2

SP1

openEuler 22.03 LTS SP1 Technical White Paper 03

Technical capabilities are first tested in the open source community, and continuously incorporated into each openEuler
release. In addition, each release is built on feedback given by community users to bridge the gap between innovation and the
community, as well as improve existing technologies. openEuler is both a release platform and incubator of new technologies,
working in a symbiotic relationship that drives the evolution of new versions.

Innovative Platform for All Scenarios

openEuler supports multiple processor architectures (x86, Arm, SW64, RISC-V, and LoongArch) and will support other brands
(such as PowerPC) in the future, as part of a focus to continuously improve the ecosystem of diversified computing power.

The openEuler community is home to an increasing number of special interest groups (SIGs), which are dedicated teams that
help extend the OS features from server to cloud computing, edge computing, and embedded scenarios. openEuler is built to
be used in any scenario, and comprises openEuler Edge and openEuler Embedded that are designed for edge computing and
embedded deployments, respectively.

The OS is a perfect choice for ecosystem partners, users, and developers who plan to enhance scenario-specific capabilities.
By creating a unified OS that supports multiple devices, openEuler hopes to enable a single application development for all
scenarios.

Open and Transparent: The Open Source Software Supply Chain
The process of building an open source OS relies on supply chain aggregation and optimization. To ensure reliable open
source software or a large-scale commercial OS, openEuler comprises a complete lifecycle management that covers building,
verification, and distribution. The brand regularly reviews its software dependencies based on user scenarios, organizes
the upstream community addresses of all the software packages, and verifies its source code by comparing it to that of the
upstream communities. The build, runtime dependencies, and upstream communities of the open source software form a closed
loop, realizing a complete, transparent software supply chain management.

Server
Base public services

EmbeddedServer Cloud computing Edge

openEuler 22.03 LTS SP1 Technical White Paper04

02/
Platform Architecture

openEuler 22.03 LTS SP1 Technical White Paper 05

System Framework
openEuler is an innovative open source OS platform built on kernel innovations and a solid cloud base to cover all scenarios.
It is built on the latest trends of interconnect buses and storage media, and offers a distributed, real-time acceleration engine
and base services. It provides competitive advantages in edge and embedded scenarios, and is the first step to building an all-
scenario digital infrastructure OS.

openEuler 22.03 LTS SP1 runs on Linux kernel 5.10 and provides POSIX-compliant APIs and OS releases for server, cloud
native, edge, and embedded environments. It is a solid foundation for intelligent collaboration across hybrid and heterogeneous
deployments. openEuler 22.03 LTS SP1 is equipped with a distributed soft bus and KubeEdge+ edge-cloud collaboration
framework, among other premium features, making it a perfect choice for collaboration over digital infrastructure and everything
connected models.

In the future, the openEuler open source community will continue to innovate, aiming to promote the ecosystem and consolidate
the digital infrastructure.

Kernel innovations:

•	 Enhanced cloud-native scheduling: openEuler suits hybrid deployments of online and offline cloud services. Its innovative
CPU scheduling algorithm ensures real-time CPU preemption and jitter suppression for online services. Additionally, its
innovative memory reclamation algorithm against out of memory (OOM) allows online services to run reliably based on their
higher service priorities.

•	 EulerFS: A new file system is designed for non-volatile dual in-line memory modules (NVDIMMs). It uses technologies such
as soft updates and dual-view directories to accelerate file metadata synchronization and thus improve file read and write
performance.

•	 Tiered memory expansion etMem: With the user-mode swap function, the discarded cold memory can be changed to the
user-mode storage based on a preset policy. The user-mode swap delivers a higher performance than the kernel-mode swap
and the whole swap process is transparent to users.

•	 Enhanced memory reliability, availability, and serviceability (RAS): The tiered-reliability memory technology preferentially
allocates high-reliability memory for sensitive data, such as kernels and key processes. This technology reduces the system
breakdown rate and enhances system reliability.

Cloud base:

•	 KubeOS for containers: In cloud native scenarios, the OS is deployed and maintained in containers, allowing the OS to be
managed based on Kubernetes, just as service containers.

•	 Secure container solution: Compared with the traditional Docker+QEMU solution, the iSulad+shimv2+StratoVirt secure
container solution reduces the memory overhead and boot time by 40%.

•	 Dual-plane deployment tool eggo: OSs can be installed with one click for Arm and x86 hybrid clusters, while deployment of
a 100-node cluster is possible within just 15 minutes.

New scenarios:

•	 Edge computing: openEuler 22.03 LTS SP1 Edge is released for edge computing scenarios. It integrates the KubeEdge+
edge-cloud collaboration framework to provide unified management, provisioning of edge and cloud applications, and other
capabilities.

•	 Embedded: openEuler 22.03 LTS SP1 Embedded is released for embedded scenarios, helping compress images under 5
MB and image loading within 5 seconds.

Flourishing community ecosystem:

•	 Desktop environments: UKUI, DDE, Xfce, Kiran-desktop, and GNOME.

•	 openEuler DevKit: Supports OS migration, compatibility assessment, and various development tools such as secPaver
which simplifies security configuration.

openEuler 22.03 LTS SP1 Technical White Paper06

Platform Framework
The openEuler open source community partners with upstream and downstream communities to advance the evolution of
openEuler versions.

Hardware Support
The openEuler open source community works with multiple vendors to build a vibrant southbound ecosystem. With participation
of major chip vendors including Intel and AMD, all openEuler versions support x86, Arm, ShenWei, Loongson, and RISC-V
CPU architectures, and a wide range of CPU chips, such as Loongson 3 series, Zhaoxin KaiXian and KaiSheng, Intel Ice Lake
and Sapphire Rapids, and AMD EPYC Milan and Genoa. openEuler can run on servers from multiple hardware vendors and is
compatible with NIC, RAID, Fibre Channel, GPU & AI, DPU, SSD, and security cards.

openEuler supports the following CPU architectures:

Global
open source
communities

Processors Industry ISVs Wide Variety
of Community

Partners

OS Vendors

Participating in

Multiple-computing
power vendors

Governments, telecom carriers,
security, finance, and electricity

Other upstream
communities

Upstream first

openEuler Open Source Community

Secondary release
Direct use

Set up
specs

Version
release

Tool
release

SLAO&M platformUser
feedback

Defect tracking platform

Chip ecosystem

Build platform

Code, version and tool management platform

Publish
specs

Community
development

platform

openEuler supports the following servers:

Hardware Type x86 Arm ShenWei Loongson RISC-V

CPU Intel, AMD,
Zhaoxin, Hygon

Kunpeng,
Phytium ShenWei Loongson Nuclei, StarFive,

UC Techip

Hardware Type x86 Arm ShenWei Loongson

Server

Intel: xFusion, H3C,
Inspur, Lenovo,
Nettrix, SUPERCLOUD,
PowerLeader,
Supermicro, ZTE, Dahua,
Jaguar Microsystems

AMD: H3C, Lenovo,
Supermicro

Hygon: H3C, Sugon/Suma

Zhaoxin: Zhaoxin

Kunpeng: TaiShan, Tongfang,
H3C, PowerLeader,
Digital China,
Yangtze Computing,
Huanghe, Sichuan
Hongxin, Xiangjiang
Kunpeng, 100 Trust,
Tiangong,
SUPERCLOUD

Phytium: QS, H3C,
PowerLeader,
Lenovo, Tongfang,
Skysolidiss

ShenWei Loongson

openEuler 22.03 LTS SP1 Technical White Paper 07

Hardware Type x86 Arm

NIC Huawei, Mellanox, Intel, Broadcom, Marvell,
NetSwift

Huawei, Mellanox, Broadcom, Marvell,
NetSwift, Intel

RAID Huawei, Avago, PMC Huawei, Avago, PMC

Fibre Channel Huawei, Marvell, Qlogic, Emulex Huawei, Marvell, Qlogic, Emulex

GPU & AI Huawei, NVIDIA, AMD, Iluvatar CoreX, Intel Huawei, NVIDIA, AMD, Iluvatar CoreX, Intel

DPU Jaguar Microsystems

SSD Huawei, Samsung, Intel, Dera Huawei, Samsung, Intel, Dera

Security Sansec Sansec, Xilinx

openEuler supports the following cards:

For the complete compatibility list, visit: https://www.openeuler.org/en/compatibility/.

openEuler 22.03 LTS SP1 Technical White Paper08

03/
Operating

Environments

openEuler 22.03 LTS SP1 Technical White Paper 09

Servers
To install openEuler on a physical machine, check that the physical machine meets the compatibility and hardware requirements.
For a full list, visit https://openeuler.org/en/compatibility/.

VMs
openEuler supports the following virtual machines (VMs):

1. centos-7.9 qemu 1.5.3-175.el7 libvirt 4.5.0-36.el7 virt-manager 1.5.0-7.el7
2. centos-8 qemu 2.12.0-65.module_el8.0.0+189+f9babebb.5

libvirt 4.5.0-24.3.model_el8.0.0+189+f9babebb virt-manager 2.0.0-5.el8
3. fedora 32 qemu 4.2.0-7.fc32 libvirt 6.1.0-2.fc32 virt-manager 2.2.1-3.fc32
4. fedora 35 qemu 6.1.0-5.fc35 libvirt 7.6.0-3.fc35 virt-manager 3.2.0-4.fc35

Edge Devices
To install openEuler on an edge device, check that the edge device meets the compatibility and hardware requirements.

Embedded Devices
To install openEuler on an embedded device, check that the embedded device meets the compatibility and minimum hardware
requirements.

Item Configuration Requirement

Architecture AArch64, x86_64

Memory At least 4 GB

Drive At least 20 GB

Item Configuration Requirement

Architecture AArch64, x86_64

Memory At least 4 GB

Drive At least 20 GB

Item Configuration Requirement

Architecture AArch64, AArch32

Memory At least 512 MB

Drive At least 256 MB

Item Configuration Requirement

Architecture AArch64, x86_64

CPU 2 CPUs

Memory At least 4 GB

Drive At least 20 GB

openEuler 22.03 LTS SP1 Technical White Paper10

04/
Scenario-specific

Innovations

openEuler 22.03 LTS SP1 Technical White Paper 11

openEuler 22.03 LTS SP1 includes the Edge release for edge computing and the Embedded release for embedded systems.
The OS empowers all-scenario collaboration over the new generation of digital infrastructure.

Embedded
openEuler 22.03 LTS SP1 Embedded offers a distributed soft bus and software package build capabilities to allow for mixed
criticality deployment of real-time and non-real-time planes. Based on the participation of ecosystem partners, users, and
developers of the openEuler open source community, openEuler 22.03 LTS SP1 Embedded helps to design efficient embedded
OS solutions. It will attain greater support for chip architectures such as PowerPC and RISC-V, and add capabilities such as
deterministic latency, industrial middleware, and simulation systems.

Feature Description

openEuler 22.03 LTS SP1 provides the following features for embedded scenarios:

•	 Lightweight deployment: The open source Yocto is a small-scale and lightweight framework that allows you to customize
OS images. It can compress OS images to under 5 MB and shorten OS startup time to under 5s.

•	 Support for diverse hardware types: Among others, Raspberry Pi is a new device that can serve as the universal hardware
for embedded deployments.

•	 Soft real-time kernel: This capability is inherited from Linux kernel 5.10, and helps respond to soft real-time interrupts within
microseconds.

•	 Mixed criticality deployment: Real-time (UniProton/Zephyr) and non-real-time planes can coexist on an SOC based on
Raspberry Pi. The lifecycle management of real-time systems is also supported.

•	 Distributed soft bus (DSoftBus): The DSoftBus and HiChain point-to-point authentication module available in
OpenHarmony are used to implement interconnection and interworking between embedded devices running on openEuler as
well as between openEuler embedded devices and OpenHarmony devices.

•	 Embedded software packages: Over 140 common embedded software packages can be built using openEuler.

•	 Hard real-time kernel: The open source Real Time Operating System (RTOS) kernel, UniProton, supports 75 POSIX APIs. It
controls the context switchover latency down to 2 μs and the interrupt latency to 1 μs.

The following features will be available soon:

•	 Unified APIs: The hard real-time kernel supports more POSIX APIs to simplify application development.

•	 Industry security certifications: openEuler 22.03 LTS SP1 is currently under review for different standards and
certifications, including IEC61508 and EC62443.

Application Scenarios

Embedded systems help supercharge computing performance in a wide range of industries and fields, including aerospace,
industrial control, telecommunications, automobiles, and healthcare. Mature 5G and AI technologies will enable embedded
systems to meet the demands for intelligent management of IoT and edge computing devices.

O
pe

nH
ar

m
on

y/
op

en
Eu

le
r E

co
sy

st
em

Southbound ecosystem

QEMU Arm RISC-V Loongson x86 …

Soft real-time

Industry applications

Industrial computers Robots Electricity …

Embedded virtualization

Linux kernel 5.10 Scheduler/Memory/File systems/…

Distributed soft bus Linux ecosystem Hard real-time
applications

Hard real-time

Real-time kernel

Tool
system

Unified build
system

IDE

DFX
system

Performance
tuning

Debugging

Maintenance
& test

SDKs

Simulation

Unified
metadata

presentation

Build DSL

Unified
execution

engine

Hybrid deployment
framework

openEuler 22.03 LTS SP1 Technical White Paper12

05/
Kernel Innovations

openEuler 22.03 LTS SP1 Technical White Paper 13

What's New in the openEuler Kernel
openEuler 22.03 LTS SP1 runs on Linux kernel 5.10 and inherits the competitive advantages of community versions and
innovative features released in the openEuler community.

•	 Memory RAS – reliable memory: More extensive support for reliable memory, which is used by the kernel, key processes,
memory file system, and file cache to prevent kernel resets caused by multi-bit errors (MBEs).

•	 Memory RAS – enhanced UCE tolerance: In the event the copy_from_user experiences an MBE, the affected processes
can be killed to avoid a kernel reset.

•	 Programmable kernel: The kernel scheduler can dynamically extend scheduling policies to diverse requirements.

•	 Resource isolation: cgroup v1 supports iocost. Users can configure weights to allocate I/O resources.

•	 CXL support: cgroup v1 supports iocost. Users can configure weights to allocate I/O resources.

•	 Commissioning: The perf c2c tool now runs on AArch64 Statistical Profiling Extension (SPE) to detect cache pseudo-
sharing and locate bottlenecks.

•	 AF_UNIX socket optimization: The connection delay and CPU usage are greatly reduced in concurrent tasks.

Tiered-Reliability Memory
Memory hardware faults may cause servers to break down. In the event of an uncorrectable MBE, the OS kernel and key
service processes will be impacted, and the OS will be reset, causing a long downtime.

A server may be equipped with memory resources, such as host memory buffer (HMB), NVDIMMs, and Address Range Mirror,
that vary in reliability specifications. That is, a server may run memory resources with high and low reliability. The OS can
manage different memory reliability levels, and allocate more reliable memory resources to kernels and service processes that
are susceptible to memory errors. The tiered-reliability memory feature minimizes system resets caused by memory errors and
therefore improves system availability.

Feature Description

•	 Data protection: Critical kernel data can be allocated to the highly reliable memory area, to prevent any possible memory
errors caused by kernel data reads and writes.

•	 High-reliability memory for processes: By setting the attribute of the process, you can prioritize and allocate a process to
a memory space from the highly reliable memory area.

•	 High-reliability memory for TMPFS: Read operations on the temporary file system, or TMPFS, are implemented in kernel
mode. A memory error will cause a system reset. Using highly reliable memory reduces the probability of system resets.

User-Mode Services

Kernel Services

Critical process areas

High-reliability kernel modules

High-reliability kernel data

High-reliability kernel images High-reliability TMPFS

High- and low-reliability memory areas

Tiered-Reliability Memory

High-reliability file cache

High reliability for critical
processes

Low reliability for common
processes

openEuler 22.03 LTS SP1 Technical White Paper14

•	 High-reliability memory for file cache: Read operations on the file cache (page cache) are implemented in kernel mode. A
memory error will cause a system reset. Using highly reliable memory reduces the probability of system resets.

•	 Optimization of high-reliability memory: Thresholds can be set for the file cache, user-mode processes, and TMPFS.

•	 UCE recovery: Uncorrectable errors (UCEs) triggered by memory copy in specific scenarios, such as cow, copy_mc_to_
kernel, copy_from_user, copy_to_user, get_user, and put_user, can be recovered.

Application Scenarios

Semi-closed systems have high reliability demands, such as embedded systems.

SysCare for Live Patching
SysCare is an online live patching tool that automatically fixes bugs and vulnerabilities in OS components, such as kernels,
user-mode services, and dynamic libraries. It has the following advantages:

•	 Unified patches: The tool masks differences in detail when creating patches, providing a unified management tool to
improve O&M efficiency.

•	 User-mode live patching: It supports live patching of multi-process and -thread services in user mode, which takes effect
when a process or thread is started or restarted.

•	 Lazy mechanism: SysCare fixes the ptrace defect (all kernel calls are ended) and improves the fix success rate.

Feature Description

SysCare supports live patching for kernels and user-mode services.

•	 One-click creation

SysCare is a unified environment for both kernel and user-mode live patches that masks differences between patches,
ensuring they can be created with just one click.

•	 Patch lifecycle operations

SysCare provides a unified patch management interface for users to install, activate, uninstall, and query patches.

•	 Commercial use of kernel live patches

OS: openEuler 22.03 LTS SP1

Upper-layer applications: Redis and Nginx

•	 Limited support for user-mode live patches

- SysCare supports hot fixes in Executable and Linkable Format (ELF), but not in interpreted languages.

- It supports DWARF debug information, but not debug information at the G3 level.

- It does not support cross compilation.

Application Scenarios

SysCare provides a live patching solution for bugs and common vulnerabilities and exposures (CVEs) in kernels, libraries, and
user-mode services.

SysCare

Patch making tool chain Patch management Kernel live patching User-mode live patching

openEuler 22.03 LTS SP1 Technical White Paper 15

06/
Cloud Base

openEuler 22.03 LTS SP1 Technical White Paper16

HybridSched for Hybrid Virtualization Scheduling
Low resource utilization of cloud data centers is a common issue in the industry, and has fueled ways to improve this problem,
such as deploying services based on priorities (hybrid deployment). The core technology of hybrid deployment is resource
isolation and control.

HybridSched is a full-stack solution for hybrid deployment of VMs, covering enhanced OpenStack cluster scheduling, the single-
node QoS management component Skylark, and kernel-mode base resource isolation. In particular, Skylark is a QoS-aware
resource scheduler used when high- and low-priority VMs are deployed together, improving physical machine resource utilization
while ensuring the QoS of high-priority VMs.

Feature Description

•	 Enhanced cluster scheduling: Enhances OpenStack Nova to support priority-based semantic scheduling.

•	 Power consumption control: Limits the CPU bandwidth of low-priority VMs to reduce the overall system power consumption
and ensure the QoS of high-priority VMs.

•	 Cache and memory bandwidth control: Limits the LLC and memory bandwidth of low-priority VMs. Currently, only static
allocation is supported.

•	 CPU interference control: Supports CPU time slice preemption in microseconds, SMT interference isolation, and anti-
priority-inversion.

Application Scenarios

To improve resource utilization, services are classified into high- and low-priority services based on latency sensitivity, and
deployed accordingly. Latency-sensitive services are recommended for high-priority VMs, such as web services, high-
performance databases, real-time rendering, and machine learning inference; while services not limited by latency can be used
for low-priority VMs, such as video encoding, big data processing, offline rendering, and machine learning training.

openEuler HybridSched

OpenStack

Keystone

Cinder

Nova compute

libvirt priority definition

cgroup/resctrl/proc

Neutron

Cinder

Glance

Neutron

Nova

Hybrid resource model Priority semantics Global core binding

Skylark

Kernel

Power consumption data collection

Interference
locating

Interference
quantification

QoS analysis

Anti-hunger and anti-priority-inversion

SMT isolation Hard priority

Multi-type resource allocation mechanism

RDT MPAM

Existing component/mechanism Enhanced component/mechanism

CPU interference isolation CPU/Memory bandwidth interference isolation

QoS control

Control space search

CPU bandwidth control

openEuler 22.03 LTS SP1 Technical White Paper 17

Container OS NestOS
NestOS is a cloud OS incubated in the openEuler community. It runs rpm-ostree and Ignition technologies over a dual rootfs
and atomic update design, and uses nestos-assembler for quick integration and build. NestOS is compatible with platforms
such as Kubernetes and OpenStack, reducing container overheads and providing extensive cluster components in large-scale
containerized environments.

Feature Description

•	 Out-of-the-box design: Integrates popular container engines such as iSulad, Docker, and Podman to provide lightweight
and tailored OSs for the cloud.

•	 Easy configuration: Uses the utility Ignition to install and configure a large number of cluster nodes with a single
configuration.

•	 Secure management: Runs rpm-ostree to manage software packages and works with the openEuler software package
source to ensure secure, stable atomic updates.

•	 Hitless node updating: Uses Zincati to provide automatic node updates and reboot without interrupting services.

•	 Dual rootfs: Executes dual rootfs for active/standby switchovers, to ensure integrity and security during system running.

Application Scenarios

NestOS aims to meet the demands of containerized cloud applications, to solve problems such as inconsistent and repeated
O&M operations of stacks and platforms. These problems are typically caused by decoupling of containers and underlying
environments when using container and container orchestration technologies for rollout and O&M, but NestOS resolves this to
ensure consistency between services and the base OS.

Application and Service

PaaS

Physical Virtual Private Public

Application and Service

openEuler 22.03 LTS SP1 Technical White Paper18

07/
Enhanced Features

openEuler 22.03 LTS SP1 Technical White Paper 19

Full-Stack Support for SM Cryptographic Algorithms
The openEuler OS now supports ShangMi (SM) cryptographic algorithms (SM2, SM3, and SM4) in key security features, and
provides cryptographic services such as the SM cryptographic algorithm library, certificates, and secure transmission protocols
for upper-layer applications.

Feature Description

SM cryptographic algorithms provide the following features:

•	 User-mode algorithm libraries, such as OpenSSL and Libgcrypt, support SM2, SM3, and SM4.

•	 OpenSSH supports SM2, SM3, and SM4.

•	 OpenSSL supports the Transport Layer Cryptography Protocol (TLCP) stack of the SM standards.

•	 SM3 and SM4 are supported for drive encryption (dm-crypt/cryptsetup).

•	 SM3 is supported for password encryption in user identity authentication (pam/libuser/shadow).

•	 SM3 is supported for data digest in intrusion detection (AIDE).

•	 SM2, SM3, and SM4 are supported in the kernel cryptographic framework (crypto), allowing algorithm performance
optimization using instruction sets such as AVX, CE, and NEON.

•	 The SM3 message digest algorithm and SM2 certificate are supported in Integrity Measurement Architecture and Extended
Verification Module (IMA/EVM) of the kernel.

•	 The SM2 certificate is supported in kernel module signing and module signature verification.

•	 SM4-CBC and SM4-GCM algorithms are supported in Kernel Transport Layer Security (KTLS).

•	 SM3 and SM4 are supported in the Kunpeng Accelerator Engine (KAE).

•	 The shim component supports secure OS boot based on SM2 and SM3

Application Scenarios

The SM capabilities provided by openEuler safeguard applications running on openEuler. For example, SM3 is used to encrypt
service data based on the OpenSSL encryption API, and SM3 or SM4 is used to encrypt drives in dm-crypt.

GCC for openEuler
GCC is developed on open source GCC 10.3 to provide software and hardware collaboration, memory optimization, SVE
vectorization, and math library and other functions.

•	 The compiler fully utilizes the hardware features of Arm processors to achieve higher operating efficiency. In the benchmark
tests such as SPEC CPU 2017, it delivers much better performance than GCC 10.3 of the upstream community.

•	 It supports the mcmodel=medium, fp-model, quadruple-precision floating points, and vectorized math library.

•	 Automatic feedback optimization improves performance in scenarios such as databases.

Multiple GCC versions co-exist, including gcc-toolset-12 series whose installation packages run on GCC 12.2.0, to enhance Intel
SPR features.

Feature Description

•	 mcmodel=medium addressing: Allows symbols (> 4 GB) to be properly accessed, which resolves the error caused by
buffer overflow in the Arm architecture.

•	 Quadruple precision: Effectively improves the precision of 128-bit floating point arithmetic over the Arm architecture.

•	 Vectorized math library: Automatically searches for the available vectorized math library in the vectorization phase.

•	 SVE vectorization: Significantly improves program running performance for Arm-based machines that support SVE
instructions.

•	 SLP vectorization: Analyzes and vectorizes reduction chains group and grouped_stores to improve stability of ongoing
programs.

openEuler 22.03 LTS SP1 Technical White Paper20

•	 fp-model precision control: Controls and refines the precision of floating-point calculations.

•	 Memory layout: Rearranges the positions of structure members so that frequently accessed structure members are placed
in continuous memory space, increasing the cache hit ratio and improving program performance.

•	 Redundant member elimination: Eliminates structure members that are never read and deletes redundant write
statements, which in turn reduce the memory occupied by the structure and subsequent bandwidth pressure, while improving
performance.

•	 Pointer compression: Compresses the 64-bit pointer in the structure field member to 8, 16, or 32 bits, which in turn reduces
the memory occupied by the structure and subsequent bandwidth pressure, while improving performance.

•	 Array comparison: Implements parallel comparison of array elements to improve execution efficiency.

•	 Arm instructions: Simplifies the pipeline of ccmp instructions for various application scenarios.

•	 Automatic feedback: Uses perf to collect and parse program information and optimizes this feedback in the compilation and
binary phases, improving the performance of mainstream applications such as MySQL databases.

Application Scenarios

In the HPC test of Weather Research and Forecasting (WRF) and Microsystems Engineering and Materials Science (NEMO)
applications, the GCC delivers 10% higher performance than GCC 10.3 of the upstream community.

BiSheng JDK
BiSheng JDK is an enhanced JDK developed based on Open Java Development Kit (OpenJDK). It features high performance
and high availability and can supercharge production environments in any field or industry scenarios, and can optimize the
performance especially for Arm-based scenarios. BiSheng JDK supports OpenJDK 8, 11, and 17 versions, and is compatible
with Java Platform, Standard Edition (Java SE). BiSheng JDK offers the following advantages:

•	 Stable and efficient: In benchmark tests, such as SPECjbb 2015, BiSheng JDK delivers much better performance than
OpenJDK.

•	 Software and hardware collaboration: BiSheng JDK fully utilizes the hardware features of Kunpeng servers for higher
efficiency.

•	 Premium security: BiSheng JDK synchronizes release updates with OpenJDK community editions, performs strict analysis
and control, and applies patches to CVEs as and when needed.

•	 Open source: BiSheng JDK provides releases and open source code, and continuously contributes to upstream
communities.

Feature Description

•	 Dynamic CDS (BiSheng JDK 8): This technology extends application class-data sharing (AppCDS) for dynamic archiving
of classes. It dumps classes loaded by Custom ClassLoader directly into a JSA file without creating a class list for every
application, which creates a wider scope of shared classes and accelerates application startup.

•	 Arm-based ZGC TBI optimization (BiSheng JDK 17): The Top Byte Ignored (TBI) feature is introduced in ARMv8-A, to
ensure hardware ignores the top byte (the most significant 8 bits) of a pointer when accessing memory. BiSheng JDK 17
now uses the TBI feature to implement Colored Pointer of ZGC on the AArch64 platform (replacing the original multi-mapping
solution), effectively improving the Java ZGC performance and reducing dTLB load misses.

Application Scenarios

Application scenario 1: Big data

BiSheng JDK optimizes memory allocation and reclamation for GC in big data applications, and eliminates redundant memory
barriers in JIT code. In related benchmark tests, BiSheng JDK delivers 5% to 20% higher performance than OpenJDK.

Application scenario 2: Java applications

BiSheng JDK optimizes the weak memory model of Kunpeng servers to avoid invalid memory barriers. NUMA-aware based
on software and hardware collaboration improves the memory access efficiency of applications and fully unleashes application

openEuler 22.03 LTS SP1 Technical White Paper 21

performance. BiSheng JDK enhances Java tools, such as JFR and jmap, to help developers quickly profile performance and
locate faults.

A-Ops for Intelligent O&M
Big data and machine learning technologies are generating huge amounts of data, with estimates of a 2- to 3-fold increase
every year. This trend is driving the need for new, intelligent O&M systems that improve efficiency at lower costs. openEuler
A-Ops provides a smart O&M framework that runs premium capabilities such as CVE management and exception detection (for
databases), to help enterprises quickly troubleshoot any issues and slash their O&M costs.

Feature Description

•	 Online CVE scans

Online updates of the vulnerability database ensure systems are equipped to quickly scan for and fix live vulnerabilities with one
click, ensuring the security of clusters with improved vulnerability remediation.

•	 Exception detection

Detects network I/O delays, packet loss, interruption, and high disk I/O loads in MySQL and openGauss service scenarios.

secGear Confidential Computing Framework
secGear is a unified development framework that delivers confidential computing for the openEuler system. Compatible with
popular trusted execution environments (TEEs) in the industry, secGear masks the differences between the TEE and SDK and
simplifies development APIs by sharing the same set of source code over different architectures, reducing development and
maintenance costs of confidential computing workloads. secGear streamlines the TEE ecosystem while contributing to the
confidential computing ecosystem.

secGear is logically divided into three layers that form the foundation of openEuler confidential computing software.

•	 Base layer: The unified layer of the confidential computing SDK provides unified APIs for different TEEs, enabling different
architectures to share the same set of source code.

Confidential Computing Hardware

Intel SGX Intel TDX RISC-V
PengLai

Arm
TrustZone

Planned New Supported

Arm
NewMore

Unified secGear APIs

Unified SDK APIs

secGear Service Layer
…

secGear Middleware Layer
…Secure channel

secGear Base Layer

Host Enclave
Remote attestation

Enclave manager

Zero-switch

Codegener

Log level API

POSIX API

Seal/Unseal

OpenSSL APISigntools

CVE scan

OS

Data management

Exception diagnosis

CVE scan interface eBPF probe

openEuler 22.03 LTS SP1 Technical White Paper22

•	 Middleware layer: The general component layer provides confidential computing software for users to quickly build
confidential computing solutions.

•	 Service layer: The confidential computing service layer runs dedicated solutions for typical situations.

The zero-switch feature uses shared memory to reduce the number of context switches and data copies, optimizing the
interaction between the rich execution environment (REE) and TEE.

After confidential computing reconstruction, an application is typically divided into a non-secure client application (CA) and a
secure trusted application (TA):

•	 Frequent calls from the CA to the TA cause prolonged calls, which severely affect the service performance.

•	 When large-block data is frequently exchanged between the CA and TA, multiple memory copies are generated during the
enclave call (ECALL), deteriorating performance.

The zero-switch feature optimizes the interaction mechanisms and reduces performance loss caused by confidential computing
reconstruction in the preceding two typical scenarios.

Feature Description

The zero-switch feature supports the following functions:

•	 ECALLs that improve call efficiency.

•	 Fast shared memory and zero-copy data exchange between the REE and TEE.

•	 Asynchronous zero-switch ECALLs.

•	 Configurable thread scheduling policies in the TEE, enabling flexible configuration of the resource mode for software and
hardware resources.

Application Scenarios

Application scenario 1: Encrypted databases

An encrypted database provides SQL query and computing capabilities in the TEE. When a database client requests a query,
the ciphertext is transferred to the TEE, sometimes in multiple times if the data volume is large. With a large number of query
requests, the calls and data copies between the REE and TEE are frequently triggered, which significantly deteriorates
performance. This feature implements zero-switch calls and zero-copy data exchange, greatly improving the end-to-end
performance of data queries.

Application scenario 2: BJCA cryptographic module

This module supports SM2, SM3, and SM4 in the TEE and provides cryptographic services for external systems. The zero-
switch feature reduces the context switches typically required for processing a large number of requests between the REE and
TEE.

Collaboration Across the Edge and Cloud
As one of the 10 major technology trends, edge computing is dominating current and future business models. Smart city,
autonomous driving, and industrial Internet applications are generating huge data volumes that cannot be processed by
centralized cloud computing. IDC forecasts that in 2025, 48.6 ZB of data will be generated in China alone, and now high-speed,
low-latency, and cost-efficient edge computing solutions are essential to many industry strategies.

Feature Description

A complete edge computing platform supports collaboration across multiple components:

Network: The cross-subnet data communication mechanism allows edge nodes to process and share data with other nodes
and with the computing center.

Service: The distributed service discovery mechanism combines with edge traffic governance policies to streamline service
capabilities across the edge and cloud.

Data: Secure, efficient data transmission and synchronization between the cloud and edge, together with data collection,
cleaning, and caching at the edge, help unify the management, processing, and operation of data in the computing center.

openEuler 22.03 LTS SP1 Technical White Paper 23

Management: The computing center gives a unified management platform to help operate resources, applications, and O&M.

Intelligence: Collaborative training, collaborative inference, and incremental learning are used to push AI applications
seamlessly to the edge.

openEuler has supported KubeEdge for edge computing deployments since openEuler 22.03 LTS.

KubeEdge is an open source cloud-native edge computing platform project developed by Huawei Cloud in coordination with
nearly 50 enterprises, organizations, and research centers. It is the first edge computing project that moves to the incubating
level under the Cloud Native Computing Foundation (CNCF). KubeEdge is a leading cloud-native edge computing service,
providing full-stack collaboration capabilities for resource management, data collaboration, and AI enablement. It is compatible
with the Kubernetes ecosystem, and works with other applications in the ecosystem to build end-to-end edge computing
solutions.

KubeEdge: As the base of the edge computing platform, KubeEdge is fully compatible with native capabilities of Kubernetes. It
allows you to use native Kubernetes APIs to manage edge applications, devices, and data.

EdgeMesh: As the data plane tool of a KubeEdge cluster, EdgeMesh consolidates separated edge network environments, and
discovers cloud-edge services and forwards traffic for applications. It masks complicated edge network topologies to simplify
network configuration and uses the cloud-native service discovery mechanism and lightweight agents to collaborate across the
edge and cloud.

Sedna: The first distributed edge-cloud AI framework enables collaborative inference, federated learning, incremental learning,
and lifelong learning across the edge and cloud to better use AI applications in edge computing environments. Sedna simplifies
the process of pushing AI algorithms to the edge and makes it easier to build AI services at the edge, thereby improving the end-
to-end performance of AI systems.

Application Scenarios

Edge-cloud collaboration scenarios, such as smart manufacturing, urban transportation, tollway inspection, smart gas stations,
medical image recognition, and smart campuses.

Industry Applications (Services) / Application Capabilities
Sedna (Cloud)

Global-
Manager

Local-
Controller

Local-
Controller

Joint
inference

Incremental
training

Federated
learning

Lifelong
learning

Intelligent
collaboration

Management
collaboration

Service
collaboration

Data
collaboration

Network
collaboration

Southbound
edge services

K8s

Container engine

OS Core

Communication kit

KubeEdge (Cloud)

EdgeMesh
Agent

KubeEdge (Edge)

Sedna (Edge)

EdgeCore

EdgeOM

Runtime EdgeDataService

EdgeHub DeviceTwin
Mananger

CoreData
Service

MetaManager ServiceBus EventBus

Edged

Platform
service

mgmt agent

Cloudcore

DynamicController

CloudHub

Edge O&M
management

EdgeMesh
Server

Selva

Platform
service repo

Platform
service

management

Edge-
installer

Edge-
Logger

Middleware

MQTT
Broker

SQLlite

Containerd

Docker

Edge-
Monitor

Device
Mapper

Device
Lib

Device
Adapter

Device
Driver

openEuler 22.03 LTS SP1 Technical White Paper24

radiaTest Community Test Platform
The radiaTest management platform carries end-to-end test activities in the openEuler community. Its key component is the
web data mid-end, which streamlines and makes community version tests traceable, but also provides plugins for resource
management and automated tests to connect to multiple test engines.

Feature Description

•	 Management of static resources for physical machines, including password change, resource release, and system
reinstallation; management of dynamic resources for VMs, with a web UI to hot-configure NICs and drives.

•	 Text case data management, version case baseline formulation, and case review.

•	 Milestone data management, data synchronization with the community's code repositories, version quality dashboards, and
trusted tests.

•	 Test task data management, automated test triggering, and IT-based management of manual test cases; unified storage of
test logs, with log splitting and marking by test step.

Application Scenarios

Application scenario 1: developer tests

The community test environment, including images, VMs, and containers, is managed on a unified platform, where test
services are made available to connect partners' environments with the community environment. This allows for concurrent test
scheduling and execution, as well as customized, self-service tasks.

Application scenario 2: version quality monitoring

For official community releases, the quality of multiple processes, such as software builds, AT execution, software change, test
execution, problem closure, and requirement progress, is monitored using IT measures.

ROS
Robot Operating System (ROS) is a set of software libraries and tools designed to help you build robot applications. From
drivers to algorithms and developer tools, ROS integrates standalone components to provide developers with a communication
framework. ROS is not an actual OS, but a middleware that enables communication between the OS and developers' ROS
applications. It can be seen as a runtime environment that runs on top of Linux, helping you efficiently organize and run robotic
perception, decision making, and control algorithms.

openEuler supports two ROS versions, ROS 1 and ROS 2.

Registration/Login

Login to Gitee

CLA verification
Group permission

verification

Info completion

Group mgmt
(Administrator)

User mgmt Task mgmt

Local casesOfficial
repos

Compass-CI APIs

openQA

Sc
he

du
lin

g

R
es

ou
rc

e
po

ol
s

D
ep

lo
ym

en
t

Ex
ec

ut
io

n
Task creation

(Version/Organization
/Team/Individual)

Task update
(Version/Organization

/Team/Individual)

Test reports
(CI scheduling
/Individual use)

Task execution Task reports

Case mgmt
(Text case writing

/Automatic case binding)

Problem analysis

Task progress
(CI scheduling
/Individual use)

1
Gitee

account
mgmt

2
Task

openness

3 Unified test environment mgmt
Flexible implementation and self-verification

R
es

ul
t a

na
ly

si
s

&
ar

ch
iv

in
g Resource pools

D
ep

lo
ym

en
t &

 e
xe

cu
tio

n Test suite/cases

System
images/repos

Test suite
configuration
(environment)

parsingSc
he

du
lin

g

worker-x86

CI scheduling Individual use

worker-Arm

CI scheduling Individual use

openEuler 22.03 LTS SP1 Technical White Paper 25

Feature Description

The following figure illustrates the ROS architecture:

The two key ROS components are available on openEuler:

•	 Communication framework

•	 Build tool

Application Scenarios

Robotics software development such as communication interaction and message processing. You can customize communication
functions (synchronous or asynchronous) for topics and services to build a basic robotics framework.

openEuler WSL
Windows Subsystem for Linux (WSL) is an adaptation layer that allows you to run Linux user-mode software on Windows. You
can download openEuler from Microsoft Store, to enjoy a native experience on Windows.

Feature Description

•	 Out-of-the-box installation: On Windows devices that support WSL, you can download the latest openEuler LTS version
from Microsoft Store with just one click.

•	 Full lifecycle support: All openEuler LTS versions within the support period are available on Microsoft Store and are
updated with official community versions.

•	 User-friendly operations: The openEuler WSL package is available on Microsoft Store, or build your own WSL applications
using the open source code in the openEuler WSL repository.

•	 Continuous feature updates: Linux native UI applications, systemd, and other features will be supported in future openEuler
WSL versions, to stay in line with Microsoft WSL iterations.

Application Scenarios

•	 Deploy and use an openEuler LTS version on Windows.

•	 Use Visual Studio Code and openEuler WSL to create a smooth cross-platform development experience.

•	 Build a Kubernetes cluster in openEuler WSL.

•	 Use openEuler command-line programs or scripts to process files and programs in Windows or WSL.

kiran-desktop-2.4
The Kiran desktop has two releases this year, kiran v2.3 that runs on openEuler 22.09, and kiran v2.4 that runs on openEuler
22.03 LTS SP1.

kiran v2.4 has the following added content over its predecessor:

Client Library

Application
Application

Layer Master

Middleware
Layer

OS
Layer

Node Node Node Node Node

Application

Linux

TCPROS/UDPROS Nodelet API

ROS1

Client Library

Abstract DDS Layer

lntra-process
APIDDS

ROS2

Linux/Windows/Mac/RTOS

openEuler 22.03 LTS SP1 Technical White Paper26

•	 Front end of the control center

•	 Session management

•	 Qt themes

LoongArch Architecture
openEuler works with Loongson and other partners to port the openEuler 22.03 LTS version to the LoongArch architecture,
during which 124 pull requests (PRs) were merged, 3,532 source packages and 14,378 binary packages were built, and over
100 build and test issues were resolved. To date, ISO files for CLFS, RootFS, Docker images, and the Loongson Beta4 version
have been created but the official ISO version is still in development.

ShenWei Architecture
ShenWei provides the BIOS, Virtual Machine Manager (VMM), and OS functions to help schedule and manage hardware and
software resources such as CPUs, memory, and processes. VMs can be used for secure virtual terminals, and new features are
available in the openEuler community to support servers and workstations and provide virtualization capabilities.

PowerPC Architecture
Based on the open source RISC architecture, Hexin Tech has verified the openEuler PowerPC version on their HX-C1000 chip,
meaning that openEuler PowerPC officially can be used for base development. The openEuler community has released the
preview ISO version for early experience.

Intel Sapphire Rapids
openEuler 22.03 LTS SP1 is fully compatible with Intel Sapphire Rapids, ensuring the following key features are incorporated
into the openEuler community:

•	 Intel Advanced Matrix Extensions (AMX) and virtualization support

•	 Intel Software Guard Extensions (Intel SGX) and virtualization support

•	 Intel Data Streaming Accelerator (Intel DSA)

•	 Sapphire Rapids new instructions and virtualization support

•	 Intel Platform Monitoring Technology (PMT) support

•	 Bus lock detection and rate limiting

•	 HBM EDAC support and enhanced MCA error recovery

•	 Intel PCIe non-transparent bridge driver

AMD EPYC Genoa
openEuler 22.03 LTS SP1 is fully compatible with AMD EPYC Genoa. Key features have been incorporated into the openEuler
community, including:

Feature Essential/Consider Incorporated
crypto Essential Yes
sme Essential Yes
hwmon Essential Yes
RAS (edac/mce) Essential Yes
kvm 5-level pagetable Essential Yes
kvm support > 255 cpus Essential Yes
idle driver update Essential Yes
PerfMon V2-core events Essential Yes
PerfMon V2-uncore events Essential Yes
PerfMon V2-IBS Essential Yes
Perf BRS Consider Yes
Perf mem/c2c Consider Yes

openEuler 22.03 LTS SP1 Technical White Paper 27

08/
Technical Preview

openEuler 22.03 LTS SP1 Technical White Paper28

WasmEngine
Framework as a Service (FaaS) is a new computing paradigm of cloud computing. It features agile development, auto
scaling, pay-per-use experience, and minimized O&M, helping users build any types of applications and services with ease.
Conventional container-based FaaS decouples custom computing capabilities from content delivery network (CDN) services and
implements fast iteration and updates. However, its cold start speed and memory overhead of containers make it insufficient for
quick execution and processing of tens of thousands of instances on a single node, such as those in high-concurrency, heavy
traffic scenarios.

To solve this, openEuler provides a WasmEngine sandbox solution based on the WebAssembly (WASM) technology to isolate
functions in the WASM sandbox.

Feature Description

The functions of the lightweight WasmEngine are available thanks to the following two key components:

1. WASM function management framework

•	 Listens to and processes concurrent function requests.

•	 Manages functions throughout their lifecycle.

•	 Can work on Open Container Initiative (OCI) container images and manage local function image resources.

2. WASM lightweight coroutine scheduling framework

Abstracts the execution context of WASM instances, supports lightweight and high-performance user-mode coroutine scheduling
models, and supports multiple WASM instance execution models such as JIT and AOT.

Application Scenarios

Stateless FaaS function tasks that run for a short period of time can be started on demand. For example, in the CDN edge
computing scenario, custom request preprocessing functions allow for on-demand pulls and quick response.

eBPF-based Programmable Scheduling Framework
The eBPF-based programmable scheduling framework enables the kernel scheduler to extend scheduling policies and better
meet varying loads. It has the following features:

•	 Tag management mechanism: The capability of tagging tasks and task groups is open. Users and kernel subsystems can
tag specific workloads by calling interfaces. The scheduler can detect tasks of specific workloads by tag.

•	 Policy extension: The programmable scheduling framework supports policy extension for completely fair scheduling (CFS)
preemption, core selection, and task execution, and adds new extension points and various auxiliary methods to extend
policies.

FaaS framework WASM image repository

WasmEngine
WASM function management framework

WASM lightweight coroutine scheduling framework

WASI API

x86 AArch64 DPU

openEuler

Function request monitoring Function lifecycle mgmt. Function image mgmt.

WASM A WASM B WASM C WASM D

openEuler 22.03 LTS SP1 Technical White Paper 29

Feature Description

•	 Base library functions and policy library: Provides basic library functions and custom scheduling policy templates for quick
orchestration and extension of user-mode policies.

•	 Tag management mechanism: Supports user-defined extended tags for objects such as tasks, processes, groups, and
users, and bears the semantics of collaborative scheduling between user-mode and kernel-mode components.

•	 Scheduling component hook point and helper function: Supports custom policy injections for CFS core selection, task
execution, and preemption processes.

Application Scenarios

On the programmable kernel framework, developers and system administrators can create policies and dynamically load those
policies to the kernel for execution.

EulerMaker Build System
EulerMaker is a package build system that converts source code into binary packages. It enables developers to assemble and
tailor scenario-specific OSs thanks to incremental/full build, gated build, layer tailoring, and image tailoring capabilities.

Feature Description

•	 Incremental/Full build: Analyzes the impact of the changes to software and dependencies, obtains the list of packages to be
built, and delivers parallel build tasks based on the dependency sequence.

•	 Gated build: Listens to pull requests (PRs), uses dependency analysis to obtain the list of packages affected by changes,
builds software packages, and verifies the installation of those packages.

Layer tailoring EulerMaker Image tailoring

Web

API gatewayconfig space

Macro expansion

Configuration
combination

Value validation

Python library

imageTailor API

Software package
tailoring

System configuration
tailoring

Image generation

kiwi/createrepo/dnf

Resource pool

Build management

DAG scheduling

Resource scheduling

Software repository

Physical
machine

Virtual
machine Container

Software package signing

Database

CLI

hook export

Programmable user policies

Programmable kernel framework
event/map syscall/map

Policy A Policy B Policy C …

Base policy library (.lib)

Tag management (tasks/processes/groups/users)

Programmable base library (tools)

Core selection

topo_helper

Task execution

Scheduling

load_helper

Load balancing

tag_helper

...

...M
em

or
y

N
et

w
or

k

Fi
le

 s
ys

te
m

openEuler 22.03 LTS SP1 Technical White Paper30

•	 Layer tailoring: Customizes build projects by layer models to create patches, build and installation dependencies, and
compilation options for software packages.

•	 Image tailoring: Developers can configure the repository source to generate ISO, embedded, and container OS images, and
tailor the list of software packages and user login passwords for the images.

Application Scenarios

Community developers and partners build core OS repositories and OSs tailored to their own needs.

Plug-IN Framework
The Plug-IN (PIN) framework provides MLIR-oriented plug-in interfaces to help develop one plug-in for multiple compilers
and optimize features using plug-ins, improving the development efficiency. The framework supports and maintains common
capabilities such as tool compatibility and integrity check.

Feature Description

•	 MLIR-based plug-in development and easy conversion of intermediate representations such as GIMPLE.

•	 Common capabilities such as compatibility check and binary integrity check.

•	 Monitoring and verifying plug-in running, such as for compiler security and operation validity.

•	 Running plug-in clients in the form of GCC plug-ins, for plug-in functions to be executed without modifying the GCC compiler
code.

Application Scenarios

Those who frequently work on multiple compilers can use the PIN framework as the primary development platform, to develop
tools on MLIR and run them on popular compilers such as GCC in the form of plug-ins, without modifying the compiler code.

Kernel-Mode vDPA Framework and Generic vDPA Device
The vHost Data Path Acceleration (vDPA) framework simplifies hardware vDPA implementation which in turn helps to develop
and integrate hardware vDPA drivers. The framework can run on various hardware that supports data plane offload in kernel or
user mode. Compared with user-mode vDPA, kernel-mode vDPA does not require an independent DPDK process that mounts
the vDPA driver, making it suitable for offloading network, storage, and computing workloads, after which the host has less
overhead and is easier to maintain.

The original kernel-mode vDPA framework mainly supports VirtIO-net devices, but Huawei successfully contributed the Generic
vDPA Device to the Kernel and QEMU open source communities and the contribution has been incorporated. The Generic vDPA
Device feature defines a set of general vDPA device models without distinguishing specific VirtIO device types, allowing a single
framework to support all VirtIO devices, including VirtIO-net, VirtIO-blk, VirtIO-scsi, and VirtIO-fs.

Plug-in code Mainstream compilers such as GCC

PIN framework

Plug-in server Plug-in client

Cross-process communication

MLIR Plug-in
development API

Logs Runtime monitor

Communication engine

Compatibility verification Integrity check

Plug-in
event management IR conversion

Logs Runtime monitor

Communication engine

openEuler 22.03 LTS SP1 Technical White Paper 31

Feature Description

•	 Data and control plane isolation: The data plane meets the VirtIO specifications, whereas the control plane uses a generic
framework to interconnect with hardware from different vendors.

•	 Generic vDPA devices: openEuler supports simulated vDPA devices, but without the need to specify the device type, much
like using Virtual Function I/O (VFIO) passthrough devices.

•	 Kernel-mode vDPA framework: The vDPA framework is added to the kernel to support interconnection with drivers from
different vDPA hardware vendors.

Application Scenarios

Designed to meet VirtIO specifications of hardware devices, such as DPUs and SmartNICs from different vendors, and
deliver a performance close to passthrough devices (theoretically). In the future versions, VMs can be live migrated between
homogeneous and heterogeneous hardware devices.

QTFS
Quantum enTanglement File System (QTFS) is used for file system sharing between nodes. It is deployed on the host-DPU
hardware architecture or between two servers, and works in client/server mode, to let clients access file systems on servers like
accessing local file systems.

Feature Description

QTFS supports the following operations:

•	 Mount point propagation

•	 Sharing file systems such as proc, sys, and cgroup

•	 Transferring operations performed by clients on files in the qtfs directory to servers and sharing file reads and writes

•	 Remote mounting of a server's file systems on a client

•	 Customized processing of special files

•	 Remote FIFOs and UNIX sockets, and epoll, so that clients and servers can access these files in a way similar to through
local communication

•	 PCIe underlying communication on the host-DPU architecture, at a higher performance level than network communication

•	 Modularized kernel development without intrusive modification to the kernel

Guest

QEMU

Kernel

Data plane

Control planeHardware

VirtlO driver

vHost vDPA

vDPA framework

VirtIO device

VDPA hardware VDPA hardware VDPA hardware

Vendor driver Vendor driver Vendor driver

vHost

vHost vDPA ops
Generic VDPA
(net/blk/scsi/...)

openEuler 22.03 LTS SP1 Technical White Paper32

Shared File System Framework

FS4

User

System-call interface

Virtual file system switch (VFS)

Glibc

FS1 FS2

Virtual file system switch
(VFS)

FS1 FS2 FS3
QTFS

Message layer

Socket PCIe

Block layer

Device driver

Message layer

Socket PCIe
Host-DPU PCIe

msg channel
Socket msg

channel

Block layer

Device driver

QTFS-server

Application Scenarios

By offloading processes that run on the DPU management plane, QTFS masks environment differences between hosts and
DPUs on the OS abstraction layer. It allows management processes, such as libvirt, docker, and kubelet, to seamlessly run on
DPUs rather than hosts, to manage host service processes like VMs and containers. QTFS minimizes intrusive modification of
management components and lowers upgrade and maintenance costs.

openEuler 22.03 LTS SP1 Technical White Paper 33

Appendix 1: Setting Up the Development Environment

 Appendix 2: Security Handling Process and Disclosure

Environment Preparation URL

Downloading and
installing openEuler https://www.openeuler.org/en/download/

Preparing the
development environment https://gitee.com/openeuler/community/blob/master/en/contributors/prepare-environment.md

Building a
software package https://gitee.com/openeuler/community/blob/master/en/contributors/package-install.md

Disclosure of Community
Security Issues URL

Security handling process https://gitee.com/openeuler/security-committee/blob/master/security-process-en.md

Security disclosure https://gitee.com/openeuler/security-committee/blob/master/security-disclosure-en.md

11/ Appendixes

Copyright
All materials or contents contained in this document are protected by the copyright law, and all copyrights
are owned by openEuler, except for the content cited by other parties. Without a prior written permission of
the openEuler community or other parties concerned, no person or organization shall reproduce, distribute,
reprint, or publicize any content of this document in any form; link to or transmit the content through hyperlinks;
upload the content to other servers using the "method of images"; store the content in information retrieval
systems; or use the content for any other commercial purposes. For non-commercial and personal use, the
content of the website may be downloaded or printed on condition that the content is not modified and all
rights statements are reserved.

Trademarks
All trademarks and logos used and displayed on this document are all owned by the openEuler community,
except for trademarks, logos, and trade names that are owned by other parties. Without the written permission
of the openEuler community or other parties, any content in this document shall not be deemed as granting
the permission or right to use any of the aforementioned trademarks and logos by implication, no objection,
or other means. Without prior written consent, no one is allowed to use the name, trademark, or logo of the
openEuler community in any form.

09/

10/

openEuler 22.03 LTS SP1 Technical White Paper1

